乐文网>教学资源>教学反思>《三角形的内角和》教学反思

《三角形的内角和》教学反思

时间:2024-08-21 04:43:24 教学反思 我要投稿
  • 相关推荐

《三角形的内角和》教学反思

  作为一名人民教师,我们的任务之一就是课堂教学,写教学反思可以快速提升我们的教学能力,教学反思应该怎么写才好呢?下面是小编收集整理的《三角形的内角和》教学反思,欢迎大家分享。

《三角形的内角和》教学反思

《三角形的内角和》教学反思1

  本节课我通过生动活泼的多媒体课件和学生们一起探讨三角形的内角和是180°这一规律并运用这一规律解决实际问题。课件中不仅有动画而且插入音频,激发学生的学习兴趣,开阔学生的眼界,调动他们学习的激情。

  首先课件演示三种不同的三角形在争吵,(学生录音,把每个三角形说的话录下放入课件中)让学生判断他们在争吵什么,引入本节课内容。这样可以使学生的眼睛一亮,耳朵受到刺激,吸引珠学生们的注意力,很巧妙就把学生带到课堂上,激发他们的'学习兴趣。

  再次让学生观察每把三角尺的内角和内角和,以及用两个一样的三角尺拼成一大三角形,它的内角和内角和是多少,利用身边的学具材料猜想是不是所有的三角形内角和都是180°呢?提出问题,提出质疑,学生带着问题和质疑进行小组合作探究。合作探究时同桌两人一组测量三角形的内角以及计算三角形的内角和,并抽查小组上台把合作探究结果输入电脑表格一便统计和观察。但是由于需要帮助学生输入电脑,不能对每组学生的测量进行指导及询问,很多学生是运用180度这个结论来量的,不过还是有一组学生测量后得出结论是189°,有了误差。下面我就引导学生哪个角是180°,以致学生提出把三角形的三个内角撕下来看看能否拼成一平角,,师生共同撕拼一个任意的三角形,撕拼过程中学生不知如何下手 我对学生进行辅导。但是有时间的有限,不能让所学生都亲自感受一下这一撕拼的过程。但是课件上我运用动画演示,学生可以亲眼看到这一过程。

  课堂练习我是通过一个游戏“挑战不可能”巩固三角形的内角和是180°这一规律,运用课件展示了练习题的多样化,层次化,有易到难,并运用一些可爱的图片吸引学生的注意力。会后有主角“三角形”(音频)出题带到“荣誉殿堂”。游戏是孩子都喜欢,在课堂上设计一些游戏环节可以激起孩子的活力,调动他们高涨的情趣。但是我觉得这节课我设计的这个游戏只激起部分孩子的兴趣,如果把这个游戏设计成小组比赛或者男女比赛,看谁最终进入“荣誉殿堂”更激发学生的激情。

  总之,本节课我和学生完成的教学目标,学生也能感受到课件不仅能播放图片,而且可以播放音频、动画。通过这节课我深刻体会到运用多媒体教学的优势,可以开阔学生眼界,刺激学生的各种感官,激发他们的学习兴趣,同时也使教学重点难点可以清晰的展示给学生,可以增大课堂的容量。在今后的教学中,我会是自己不断提升自己的教学水平,多学习和运用信息技术手段改善自己的教学方式,以致提高学生课堂上的学习效率!

《三角形的内角和》教学反思2

  这节课我让学生经历观察、猜想、实验、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点。在学生猜测三角形的内角和是多少度的基础上,引导学生通过探究活动来验证自己的观点是否正确,激发求知的渴望和学习的热情,最后达成共识。

  新课程将探究式学习作为学生学习的主要方式之一,着重点放在让学生在主动参与的过程中进行学习,在探究问题的活动中获取知识并主动建构新的认知结构,了解获取知识的途径和技巧。我在实施探究学习时采用了以下的教学策略:

  (1)创设问题情境,引导学生发现问题,思考问题。

  本节课我在教学上先通过大小三角形争论故事引入,让学生产生疑问,继而借助特殊三角形(三角尺)初步感知这些三角形的内角和是180度,让学生猜测是否所有的三角形的内角和都一样呢?学生初步建立一个表象,学生运用已有的知识经验能否解决这样的问题呢?这个问题为后面的猜测和验证做了铺垫,引发思考,激发学习兴趣。引导学生从特殊三角形过渡到一般三角形的验证规律。

  (2)创造解决问题的环境,给充分的机会和时间让学生解决问题。 学生在问题面前是退缩还是前进呢?这就看老师如何有效地引导。我预先要求每位学生准备了一些各式各样、大小各异的三角形,还有剪刀,量角器,白纸,直尺等,让他们经历观察、猜想、实验、证明等数学活动过程。同时提出两个问题,第一:你选用什么三角形, 采用什么方法来验证?第二:经过操作得到什么结论?使学生在操作上有更强的目的性和指向性。学生分小组对大小不一的三角形进行验证,经历量一量、算一算;撕一撕,拼一拼;折一折,量一量等一系列操作活动,从而得出“三角形的内角和是180°”这一结论。整个探究过程学生是自主的、积极的。学生通过操作,思考,反馈等过程真正经历了有效的探究活动。

  对于这堂课的困惑,我觉得在有效教学当中,应该如何更好地处理“预设”与“生成”之间的关系,如何巧妙地抓住课堂中的生成,适时调整教学环节。教学设计在准备阶段,我已预设了相关的教学环节。但真正在课堂实施时,可能会出现一些不可预知的因素。如在这节课上的练习环节中,有这样一道题目:已知直角三角形的一个角是40度,求第三个角的度数。在全班交流的时候,有一个学生很快就说出90度-40度=50度。其实在预设教案时,这种方法是最后才提到的`,此时我就没有能好好去把握这个有价值的生成资源,把学生聚焦在如何利用简算来解决问题。我完全可以让这些学生说说自己的思考过程,这样做既让学生在解题方法上得到扩充,同时又符合学生的认知规律。要把握在课堂上出现的一些“生成”的资源,如何加以好好的利用。

  不足之处:

  1.验证猜想环节中,学生的方法虽然各有不同,但方法较单一,语言表达能力欠佳,思维比较定势,不敢大胆尝试不同的方法去验证自己的猜想。

  2.评价语言和方法都太单一,激励性评价没有层次。发言的学生面比较窄。

  3.教师语言不简练,老重复,总怕学生听不清楚,听不明白,语言罗嗦是我一直以来的大毛病,以后要克制自己学生会说的自己不代替,尽量不重复。

  4.因为学生在以前的学习活动中,对剪拼和拼折的方法接触的太少,考虑到课堂教学时间的关系,所以教师引得太多,给学生的自主发现机会太少。

《三角形的内角和》教学反思3

  我执教的《三角形内角和》一课是人教版义务教育课程标准实验教材四年级下册第五单元的内容,是在学生学习了《三角形的特性》以及《三角形三边关系》,《三角形的分类》之后进行的,在此之后则是《图形的拼组》,它是三角形的一个重要特征,也是掌握多边形内角和及解决其他实际问题的基础,因此,学习和掌握三角形的内角和是180°这一规律具有重要意义。

  教学是教师的教和学生的学所组成的一种教育活动。教师是教学活动的主导,教师自身教学素质的高低,直接影响主导作用的发挥程度,制约着教学效果。一个成功的数学教师,不仅具有较高的教学艺术,更在于他的敬业精神,善于“取长补短”,遵循教学的科学性。教学实践中,每一个教师既会有融教学科学与艺术相结合的佳作,也难免出现有失水准的拙课。通过课后教学反思自我总结,检查教学过程的每一环节,并加以实事求是的分析,正确对待教学的成功方面和不足之处,成功经验继承发扬,欠缺甚至严重不足方面,及时查找原因,寻求补救对策,“亡羊补牢犹未为晚”。久而久之,有利于提高教学效率与质量。同时,教师的“取长补短”的教风和敬业精神,还能启迪学生的心灵,培养学生的良好品质要充分认识到反思的重要性,不能为了反思,应付差事,要认识到反思是适应新课程的需要,促进自我发展的重要手段和途径,如果不对自己的教育教学行为进行思考,不对自己的教学经验进行总结,上完课不去重新审视、分析,很难提高自己教学水平。

  本节课的教学先通过三角形王国的小矛盾,让学生角色扮演导入新课,激发学生学习兴趣,进而引出“三角形内角和是180度”的猜想,然后组织学生自主探究、操作,在实践中验证猜想,得出结论。然后利用已学知识,解决相关问题。

  本节课学生学习积极性比较高,以下一些方面还是做得比较好的:

  教学设计环节紧凑,思路清晰。用了大量时间让学生小组进行实践操作,进行小组实验,让他们自己感知探索出三角形内角和,注重了学生操作能力和小组合作探究能力的培养。

  1、用了量、算、拼,折各种不同的方法,让学生从不同角度探索,发现思考,都可以得出三角形的内角和是180°的结论。感受数学的严谨和魅力,也使得这个知识点的理解更加透彻。

  2、当完全放手让学生实验操作调整为要求明确以后,教师适当进行一些演示,如果学生还不能完成操作,则由教师完成,只要学生能够拿着一个拼合好的图形进行观察,我就把课堂节奏掌控住,把他们的注意力引到定理的证明过程上,很好的完成教学目标。

  3、设计了不同层次的练习题,判断题都是学生平时容易出错的题目,在课堂用直观的课件显示出来,使学生印象深刻。然后逐步加深难度,到最后的思考题,使得不同层次的学生都学有所得。

  本堂课也还有很多问题值得我深思,改进:

  1、传统的教育模式让学生和老师都习惯于填鸭式的学习方法,学生总是被动的接受知识。让学生自己实践操作找结论,部分学生却不知从何做起,没有自己动脑主动学习的习惯。今后应加强学生自主思考能力的培养。

  在拼一拼的活动中,老师应该让学生先把三个角标号,撕开后再拼。在拼成平角后要用量角器或者直尺测量一下,看拼的图形是不是平角,要用严谨的态度对待,而不能光凭眼睛来判断。

  2、在进行拼、折活动时,部分学生不知道怎样折成一个平角,撕开之后就找不到要拼的角的时候,老师就应当马上去帮助,去指导。当学生体验认知过程时,一定要让他们感受学习的愉快,获得成就感,只有这样才能激发学生学习数的兴趣,学好数学的信心。

  3、时刻要注意自己和学生语言、动作的规范,体现数学的严谨性。在学生读题,回答问题的时候,要说出度数单位。在练习,书写时也要注意度数单位,强调格式。

  由于是借班上课,对学生了解不够,在课上没能以学生为主,有的内容完全可以交给学生讲解,我没能及时体察到这一点,效果不是很好,课堂气氛没能调动起来,一位老师说的好,公开课就是表演课,但主角应该是学生,老师只能做导演而不能替代学生的角色。上完课后,很多老师给了我许多宝贵的建议,比如:我上课时表情呆板于第三个练习题,讲解不够详细,大部分学生估计没听懂,我没能做到及时根据学生的表情、应答人数等细节及时调整讲题的速度??,在聆听诸位老师的点评时,有时让我有种茅塞顿开的感觉,非常感谢各位老师的精彩点评。

  作为一名青年教师,我觉得教学是教师的教和学生的学所组成的一种教育活动。教师是教学活动的主导,教师自身教学素质的高低,直接影响主导作用的发挥程度,制约着教学效果。一个成功的`政治教师,不仅具有较高的教学艺术,更在于他的敬业精神,善于“取长补短”,遵循教学的科学性。教学实践中,通过课后教学反思自我总结,检查教学过程的每一环节,并加以实事求是的分析,正确对待教学的成功方面和不足之处,成功经验继承发扬,欠缺甚至严重不足方面,及时查找原因,寻求补救对策,“亡羊补牢犹未为晚”。久而久之,有利于提高教学效率与质量。同时,教师的“取长补短”的教风和敬业精神,还能启迪学生的心灵,培养学生的良好品质要充分认识到反思的重要性,不能为了反思,应付差事,要认识到反思是适应新课程的需要,促进自我发展的重要手段和途径,如果不对自己的教育教学行为进行思考,不对自己的教学经验进行总结,上完课不去重新审视、分析,很难提高自己教学水平。

  教学过程中达到的预设的教学目的、良好的教学方法、我都会在课后记下来,供以后教学时参考使用,也可在此基础上不断改进、完善、推陈出新。同时对课堂教学中存在的疏漏失误之处,也要对它们进行系统地回顾、梳理,作出深刻的反思、探究和剖析,使之成为今后再教学时的参考物,类式的错误不在发生。 我执教的本节课在小组合作交流讨论及评价等方式来组织教学活动时,做得还不够,收放得不够自如,同学也没有完全养成良好的行为习惯,不能高质量地完成某些教学环节,但是,我觉得一个成功的好老师就是要在教学上敢于突破和创新,我应该大胆放手让学生去操作、去探索。

  叶圣陶先生曾经说过:“教是为了不需要教,教师不但要教给学生知识,更要交给学生思维科学的学习方法。”在素质教育改革的今天,在新形势下,作为一名青年教师,在指导学生如何更好的学习上,还任重道远。但我会坚持以对学生负责为中心,不断学习先进的教学理念和育人方法,不断学习反思,在反思中不断提高,并结合课堂教学实践,为追求高效课堂而不断完善自我。相信“雄关漫道真如铁,而今迈步从头越”,我会在今后的教学岗位上,“路漫漫其修远兮,吾将上下而求索”。

  

《三角形的内角和》教学反思4

  新课标把三角形的内角和作为四年级下册中三角形的一个重要组成部分,它是学生学习三角形内角关系和其它多边形内角和的基础。即使在以前没有这部分内容,大部分教师在课后也会告诉学生三角形的内角和是180度,学生容易记住。因此让学生经历研究的过程成了本节课的重点。既让学生经历“再创造”----自己去发现、研究并创造出来。教师的任务不是把现成的东西灌输给学生,而是引导和帮助学生去进行这种“再创造”的工作,最大限度调动其积极性并发挥学生能动作用,从而完成对新知识的构建和创造。

  本节课我基本达到了要求,具体表现在以下2个方面。

  1、为学生营造了探究的情境。学习知识的最佳途径是由学生自己去发现,因为通过学生自己发现的知识,学生理解的最深刻,最容易掌握。因此,在数学教学中,教师应提供给学生一种自我探索、自我思考、自我创造、自我表现和自我实现的实践机会,使学生最大限度的投入到观察、思考、操作、探究的活动中。上述教学中,我在引出课题后,引导学生自己提出问题并理解内角与内角和的概念。在学生猜测的基础上,再引导学生通过探究活动来验证自己的观点是否正确。当学生有困难时,教师也参与学生的研究,适当进行点拨。并充分进行交流反馈。给学生创造了一个宽松和谐的探究氛围。

  2、充分调动各种感官动手操作,享受数学学习的快乐。在验证三角形的内角和是180度的`过程当中,大部份同学都是用度量的方法,此时,我引导学生:180度是什么角?我们能否把三个内角转化一下呢?经过这么一提示,出现了很多种方法,有的是把三个角剪下来拼成一个平角。有的用两个大小相等的直角三角形拼成一个正方形,还有的是用折纸的方法,极大地调动了大脑,就连平时对数学不感兴趣的学生也置身其中。

  总之,充分让学生进行动手操作,享受数学学习的乐趣,是我这一节课的出发点,也是这一节课的最终归宿。

  

《三角形的内角和》教学反思5

  学生在学习了三角形的特征以及三角形分类的基础上,进一步研究三角形三个角的关系。根据教学目标和学生掌握知识的情况,课堂上我围绕以下几点去完成教学目标:

  一、创设情境,营造研究氛围

  怎样提供一个良好的研究平台,使学生有兴趣去研究三角形内角的和呢?为此我抛出大、小两个三角形争吵的情境,让学生评判谁说的对?为什么争吵?导入课引出研究问题。“三角形的内角指的是什么?”“三角形的内角和是多少?”激发学生求知的欲望,引起探究活动。我在研究三角形内角和时,没有按教材设计的'量角求和环节进行,而是从学生熟悉的正方形纸的内角和是360°入手,再把正方形纸沿着对角线剪开后会怎样呢?猜想一下其中的1个三角形的内角和是几度?学生很快得出一个直角三角形内角和是180°。猜测以下是不是各种形状、大小不同的三角形内角和都是180°呢?再组织学生去探究,动手验证,并得出结论。生在不断的发现中很自然地得到“三角形内角和是180°”的猜想。这样既使学生在这个探究过程中得到快乐的情感体验,又使学生有高度的热情去继续深入地研究“是否任何三角形内角和都是180°”。

  二、小组合作,自主探究

  任何一项科学研究活动或发明创造都要经历从猜想到验证的过程。“是否任何三角形内角和都是180°”,这个猜想如何验证,这正是小组合作的契机。通过小组内交流,使学生认识到可以通过多种途径来验证,可以量一量、拼一拼、折一折,让学生在小组内完成从特殊到一般的研究过程。然后再小组汇报研究结果以及存在问题。教师根据学生实际情况充分把握好生成性资源,让学生认识到有些客观原因会影响到研究的结果的准确性。例如,有些小组的学生量出内角和的度数要高于180°或低于180°,先让学生讨论一下有哪些因素会影响到研究结果的准确性。

  三、练习设计,由易到难

  研究是为了应用,在应用“三角形内角和是180°”这一结论时,第一层练习是已知三角形中两个内角的度数,求另一个角。第二层练习是已知等腰三角形中顶角或底角的度数,让学生应用结论求另外的内角度数。第三层练习是让学生用学过的知识解决四边形、五边形、六边形的内角和。练习设计提问体现开放性,“你还知道了什么”,让学生根据计算结果运用已有经验去判断思索。

  四、教学中存在不足

  在教学中,由于我对学生了解的不够充分,让学生自己想其它的验证方法,难度较大,浪费了大量时间,使教学任务不能完成,练习较少,新知没有得到充分巩固,以后应引起重视。在设计教案时要了解学生,深入教材,精心设计。

《三角形的内角和》教学反思6

  在学校教学示范课上,讲了《三角形的内角和》一课。整节课还算比较顺利,在课堂是完成了教学目标,并且体现了小组合作学习的探究的过程。现在总结一下课堂上的几点不足:

  1、学生小组合作学习的能力还有待于进一步培养

  在课堂教学的重点过程中,我设计的是小组合作探究,“先讨论有几种验证方法,再分别选择不同的方法验证,验证后在小组内交流”这样的目的是为了在尽量短的时间内使学生通过不同的验证方法得出共同的的结论,在交流的过程中学生能够清晰的观察到不同的验证方法,这样一个人的验证过程就成了几个人人学习成果。既节省了时间,又能让学生接受到尽量多的信息。但是学生们的表现却不令人满意,也许是公开课学生放不开的原因,他们只是各自验证完了和同桌交流一下,完全没有以往在班级里那种热烈讨论的气氛。虽然我在后面的学习汇报过程中使用了投影仪展示,但还是不如学生小组内交流更直接。因此,我这一设计的目的效果不理想。

  2、我本身驾驭课堂的能力还有待于提高

  由于在试讲的.过程中我设计的最后一个练习题没有完成,而这一道题又是这堂课教学内容一个升华,因此我想尽量完成。在课堂教学的过程中我尽量控制时间,由于过于注意时间,导致了在学生用投影仪演示完后,为了更清晰的演示折、拼的过程的动画忘了播放,影响了又一个给学生直观展示的机会。这一问题的出现我觉得是我自身驾驭课堂的能力还不够,有待于进一步提高。

《三角形的内角和》教学反思7

  背景:在课前学生已备好了直尺、三角板、量角器、剪刀和三角形纸板数张。在老师引导学生经过猜想三角形内角和为180度后。

  师:请你用你自己的方法去验证结论……

  于是乎学生兴趣浓厚,积极性非常高,只见学生在剪剪,画画,拼拼,好像非要弄一个明白不可…。一会儿,师示意学生停止了验证、探索,接着老师用多媒体课件演示教材上的拼剪方法验证…。

  请你从小组合作学习的角度谈谈对以上教学片段的看法。

  张彦彬

  这是一节非常好的让学生动手实践、亲自操作、亲身体验的课题。恰当有效的开展小组合作学习,有利于学生探究能力和合作意识的培养。但是在这一片段中存在许多值得我们思考的地方。

  密士娜

  片段中虽然“学生兴趣浓厚,积极性非常高”,但给人的感觉是学生的活动有些流于形式,没能较好的发挥好小组学习的优势。四年级学生经过第一学段以及本单元的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作、主动探究的能力。因此,我认为本节课的重点是引导学生从“猜测―——验证”展开学习活动,让学生感受这种重要的数学思维方式。而在开展小组验证活动时,我认为要分三步:首先,可以提出:“你有什么方法可以验证?”(结合学生实际情况,教师要予以点拨)。然后,在学生独立思考的基础上,提出分小组探究验证的方法。此环节应留给学生充分的思考、讨论、发现、体验的时间,让学生在交流中互取所长,合作探索,找到验证的切入点,体验成功。最后,就是要注重学生的小组汇报,在汇报中培养学生的数学语言表达能力。

  周晓芹

  在片段中注重了小组的合作学习,抓住了合作的时机,但是在小组合作的过程中真正发挥了每个学生的主观能动性吗?在学生进行要验证的时候,教师首先应该放手,通过学生自己发现、验证,这样的合作才能发展学生的思想,学生才会有学习的动力,才能让学生经历思考、探究、验证的过程,其次,注重学生的个人认识和小组认识的结合,最后,综合认识,让学生的思想进行碰撞、交流,达到合作的有效性。

  刘维舟

  学生的合作交流应是在自己的思考基础上进行的,只有在自己的充分思考基础上产生人交流才可能碰撞出思维的火花。否则这样的合作交流就成了一部学生在探讨,而有部分学生就成了看客。同时要给学生充分的时间,不能流于形式,像上面的场景一样“一会儿”这样的合作表面上是热闹的,学生也动了,但可能具体的效果并不太好。既然让学生探索,就应有足够的时间,并给学生展示自己的思维能力过程的机会,这样才能展现出学生的思维过程,在教学中才能有的放矢。同时也可让学生在这一过程中让学生体会一些基本的数学思想和数学方法。

  刘维舟

  学生的合作交流应是在自己的思考基础上进行的,只有在自己的充分思考基础上产生人交流才可能碰撞出思维的火花。否则这样的合作交流就成了一部学生在探讨,而有部分学生就成了看客。同时要给学生充分的时间,不能流于形式,像上面的场景一样“一会儿”这样的合作表面上是热闹的,学生也动了,但可能具体的效果并不太好。既然让学生探索,就应有足够的时间,并给学生展示自己的思维能力过程的机会,这样才能展现出学生的思维过程,在教学中才能有的放矢。同时也可让学生在这一过程中让学生体会一些基本的数学思想和数学方法。

  武鹏

  对于合作学习,我有很多想法但从这节课来看还没有做到小组合作学习!合作学习就是为了把课堂交还给学生,并通过学生的交流去完成具体的目标。而这位老师的做法只是让学生去想,而没有交流,还是老师的讲授为主!

  刘维舟

  建议以后听课由讲课老师调课,这样听课老师就不用大面积调课了,相对来说要方便一些。

  奚传武

  这个案例,教师的小组合作学习有些流于形式,在学生合作学习时,教师应参与学生的讨论,合作学习结束以后,学生处于兴趣浓厚积极性非常高的时候,教师应组织学生进行全班交流、反馈合作学习的信息,并根据反馈的信息进行有效指导。小组合作学习,必须在独立学习的基础上进行。

  首先应给学生独立的学习时间。然后组织学生小组合作学习,在组内交流意见,统一意见,再到全班交流,再次形成统一的意见,逐渐形成正确认识。小组合作学习要做好小组分工。注重发挥小组合作学习的有效功能,才能促进学生的发展。

  卫秀红

  我认为片段中的这位老师没有抓住小组合作的时机,他根本没有提出让小组合作去探究,而是让学生毫无目的地用自己的方法去验证。看上去学生在动手很热闹,其实是低效的活动。

  孩子们虽然都能猜测回答出三角形的内角和是180度,在这个过程中孩子们知道了内角的概念,但是他们却不知道怎样才能得出三角形的内角和是180度。因此本节课研究的重点应是:让学生在小组合作中动手操作,验证三角形的内角和是180度。这也是本节课的难点。如果老师能抓住在动手探究验证这一环节提出在小组中进行合作学习,就抓住了合作的时机。在学生合作前,可以先简单交流验证的.方法、明确合作学习的要求,在小组成员明确分工后再开始合作探索验证。在学正充分探究后,再交流验证的结论!最好让学生演示拼剪方法,展示不同的思路,从而突出学生的主体地位。

  孙静

  看完这个片段,我的感觉只是让学生做了探究,但是少了小组汇报和小组之间的交流,老师展示教材上的方法我觉得完全可以在学生汇报之后在进行总结是再展示!既然谈小组合作就要给学生一个展示的平台,给谈们充分的时间去说!

  马艳伟

  把课堂交给学生,让学生在思考,讨论、探究中体验学习的乐趣。怎样把课堂交给学生是我们应该思考的问题。小组合作能有效的发挥学生的主观能动性。调动学生学习的积极参与学习的过程。于是有的老师就热衷于让学生小组合作,而不管他们是不是真的在合作,是不是合作的有意义,有效果。是不是所学的内容适合小组合作。

  三角形的内角和是180。这节课的内容适合小组合作。可这位老师在教学中忽视了学生的合作是不是真的有效,学生在合作中有没有探究出结论。而让小组合作流于形式,看起来学生热热闹闹,其实没有效。教师急于把应该学生呈现的验证过程,利用多媒体呈现出来。应该所他的小组合作是失败的。

  马艳伟

  把课堂交给学生,让学生在思考,讨论、探究中体验学习的乐趣。怎样把课堂交给学生是我们应该思考的问题。小组合作能有效的发挥学生的主观能动性。调动学生学习的积极参与学习的过程。于是有的老师就热衷于让学生小组合作,而不管他们是不是真的在合作,是不是合作的有意义,有效果。是不是所学的内容适合小组合作。

  三角形的内角和是180。这节课的内容适合小组合作。可这位老师在教学中忽视了学生的合作是不是真的有效,学生在合作中有没有探究出结论。而让小组合作流于形式,看起来学生热热闹闹,其实没有效。教师急于把应该学生呈现的验证过程,利用多媒体呈现出来。应该所他的小组合作是失败的。

  高春美

  这节课中看上去很热闹,学生的积极性非常高。但学习效率不高。本节课老师让学生用个种方法去剪、画、拼。看上去老师让学生用多种方法,方法非常灵活,其实老师没有提出合作探究的要求,学生没有目的去探究学习的内容效果很低效的。既然是让学生去动手操作了,为什么不去展示学生作品呢?应让学生去展示并汇报,师要注意学生汇报时语言表达能力。

  高春美

  这节课中看上去很热闹,学生的积极性非常高。但学习效率不高。本节课老师让学生用个种方法去剪、画、拼。看上去老师让学生用多种方法,方法非常灵活,其实老师没有提出合作探究的要求,学生没有目的去探究学习的内容效果很低效的。既然是让学生去动手操作了,为什么不去展示学生作品呢?应让学生去展示并汇报,汇报时教师注意学生的语言表达能力。

  李飞飞

  小组合作学习是一种很好的学习方式,也是非常必要的,他可以让学生自主发现问题,解决问题但是有时候,在实施过程中难免要出现为了做课而进行的小组合作,搞形式上的小组合作.没有实际意义,纯属于浪费时间.我认为小组合作的前提是应当老师在备课过程中发现的学生不容易理解的问题以及提出他们能够力所能及的问题,让学生自己想办法去解决,而不是我们一味的传授死板的教学法法,进行有效的积极的小组合作学习小组合作是学习数学很重要方式,我觉得这个学习方法也是学习其他课的学习方式,所以小组合作事非常重要的。

  周荣花

  小组合作学习是老师在抛出一个问题,经过思考、讨论而不能解决后,通过小组的讨论,动手合作进而把问题明确,最后在经过各个小组不同的汇报,集全体学生的智慧而把问题解决。老师只是这一活动的组织者。而这一片段只是为了合作而合作,并不是为了解决问题而合作,因此合作学习对于这一节课毫无意义。因而合作学习这一活动要谨慎应用,只有这样它才能为我们的课堂增光添彩。

  侯艳芬

  小组合作学习形式多样,可以是几个学生的观点方法相互交换、交流;可以是差生看并学优生的一些方法,并“据为己有”。可以是几个学生在一起共同完成掌握知识的过程;也可以是小组内组织有关学习的实践活动、问题争论或组组间的辩论等。这都需要在平时的教学中不断培养!

  王甲荣

  本片段老师注重了小组合作学习,只是走过场,没有实效性。在合作结束后没有让学生展示自己的思维过程,教师无法了解学生的合作动态,教师成了看客。

《三角形的内角和》教学反思8

  1、课堂教学要有预见性,更重视课堂生成性。

  教师对学生在课堂上可能出现的问题有一定的预见,教师才能设计出最适合本班学生的教案,才能更好地把握课堂动态。在这节课上,我让学生猜三角形的内角和,结果学生非常肯定的说是180度。还说不论什么样的三角形内角和都是180度。这时候与老师的预见是不同的。原本以为学生会猜出不同的结论的。但是付老师表现出了教学机智,他问,究竟是不是180度呢?你怎么证明呢?这进一步的提问一下子把学生的思考的'引向了课堂的中心所在。

  2、找准教师“导”与学生“行”的平衡点,关键词是相信学生是能行的。

  满堂灌的课堂教学模式在新的教育理念的一轮轮冲击下,逐渐被广大教师在思想上摒弃,但是要真正实现教师变满堂讲为适时导,学生变“听”为多方面“行”的课堂局面,还需要教师找准“导”与“行”的平衡点。

  本节课中,三角形的内角和是180度这个结论很多同学早就知道了,但是这节课的目的很显然不在于只教给学生结论,而是要通过学习活动,培养学生的动手能力,遇到问题努力求证的科学精神,和同学合作交流的能力,归纳推理判断的能力。我认为这节课还可以放手更多一些,采取小组合作学习的方式,让学生去实验求证结论。在相互的争辩中明晰概念。

  新的课程标准要求教师要根据孩子已经具有的知识和生活经验,对受教育者进行有目的启发和引导,把学生的好奇心转化为求知欲,逐步形成稳定的学习数学的兴趣。教师要在课堂上以与生活密切联系的素材来激起学生对数学本身的浓厚兴趣,通过学生自主探索活动,让学生获得成功的体验,增进学生学好数学会用数学的信心。通过课堂上学生的表现,我们看出,学生有独立探索的精神,也有去证明求知的能力,我们要的只是信任他们,设计好实验方案,做好组织,让学生的操作、讨论、练习等活动有条有理。真正让学生成为学习的主人。

《三角形的内角和》教学反思9

  “合作探究,实验论证”生动地诠释了新教育的基本理念,本课新知识传授很好的把握三个环节。

  一是学生独立思考,教师引导学生讨论验证方法,掌握要领。上课开始,我通过提问三角板中每个角的度数以及每块三角板的内角的和是多少?初步让学生感知直角三角形的内角和是180,然后质疑:,这仅仅是一副三角板的内角和,而且也是直角三角形,那是不是所有的三角形中的三个内角的都是180°呢?这个问题一提出去就激发学生的探究学习的热情。因此接着就让学生讨论:有什么办法可以验证得出这样的结论。学生提出度量、折一折、拼一拼等方法。

  二是动手操作验证猜想。让学生拿出课前准备的锐角三角形、直角三角形、钝角三角形以小组为单位有选择的用度量的方法或者用折一折的方法或者拼一拼的方法等等,通过小组合作交流,印证猜想,得出任意三角形的内角和是180°的结论。

  三是进行总结强化了学生对结论的理解与记忆,激发学生探索知识的热情。科学验证了结果,让学生用简洁的语言总结结论:三角形的内角和是180°。

  《三角形的内角和》是九年制义务教育人教版四年级下册第五章《三角形》的第二节内容,本节课是在学生学习了与三角形有关的概念、边、角之间的关系的基础上,让学生动手操作,通过一些活动得出“三角形的内角和等于180°”成立的理由,由浅入深,循序渐进,引导学生观察、猜测、实验,总结。逐步培养学生的逻辑推理能力.

  “问题的提出往往比解答问题更重要”,其实三角形内角和是多少?大部分的学生已经知道了这一知识,所以很轻松地就可以答出。但是只是“知其然而不知其所以然”,所以我特别重视问题的提出,再让学生各抒已见,畅所欲言,鼓励学生倾听他人的方法。

  本课的重点就是要让学生知道“知其然还要知其所以然”,所以在第二环节里。鼓励学生亲自动手操作验证猜想。为此,我设计了大量的操作活动:画一画、量一量、剪一剪、折一折、拼一拼、撕一撕等,我没有限定了具体的操作环节,但为了节省时间,让学生分组活动,感觉更利于我的目标落实。但在分组活动中,我更注意解决学生活动中遇到了问题的解决,比如说画,老师走入学生中指导要领,因此学生交上来画的作品也非常的漂亮。学生观察能力得到了培养。再比如说折,有的学生就是折不好,因为那第一折有一定的难度,它不仅要顶点和边的重合,其实还要折痕和边的平行,这个认识并不是每个学生都能达到的。教师也要走上前去点拨一下。再比如撕,如果事先没有标好具体的角,撕后就找不到要拼的角了……所以在限定的操作活动中,既体现了老师的“扶”又体现了老师的“放”。做到了“扶”而不死,“伴”而有度,“放”而不乱。我还制作了动画课件,更直观的展示了活动过程,生动又形象,吸引学生的注意力。使学生感受到每种活动的特点,这对他认识能力的提高是有帮助的。在此环节增加了学生的合作探究精神培养。

  在归纳总结环节,有意识地培养学生的说理能力,逻辑推理能力,增强了语言表达能力。

  最后通过习题巩固三角形内角和知识,培养学生思维的广阔性,为了强化学生对这节课的掌握,我除了设计了一些基本的`已知三角形二个内角求第三个角的练习题外,还设计了几道习题,第一道是已知一个三角形有二个锐角,你能判断出是什么三角形吗?通过这一问题的思考,使学生明白,任意三角形都有二个锐角,因此直角三角形的定义是有一个角是直角的三角形叫直角三角形;钝角三角形的定义是有一个钝角的三角形叫钝角三角形;而锐角三角形则必须是三个角都是锐角的三角形才是锐角三角形的道理。这道题有助于帮助学生解决三角形按角分的定义的理解。第二道题是一个三角形最大角是60°,它是什么三角形?通过对此题的研究,使学生发现判断是什么三角形主要看最大角的大小,如果最大角是锐角,也可以判断是锐角三角形。同时加深了学生对等边三角形的特点的认识和理解。第三题我拓展延伸到三角形外角,第四题我设计了多边形的内角和的探究。

《三角形的内角和》教学反思10

  三角形的内角和一课,知识与技能目标并不难,但我认为本节课更重要的,是通过自主探究与合作交流,使学生经历知识的形成过程,领悟转化思想在解决问题中的应用,以及在探索过程中,培养学生实事求是、敢于质疑的科学态度,同时,在不同方法的交流中,开拓思维、提升能力。基于以上里面,本节课,我也准备引导学生采用自主探究、动手实践、猜想验证、合作交流的学习方法,并在教学过程中谈话激疑,引导探究;组织讨论,适时启发帮助。使教法和学法和谐统一在“以学生的发展为本”这一教育目标之中。

  由于是借班上课,学生对于三角形了解的内容还不够多,所以我才用了直接导入的形式来进入新课,让学生自己探讨什么是三角形的内角,三角形有几个内角,三角形的内角和又是多少呢?来揭示内角和内角和的概念,学生明确了内角与内角和的概念,然后让学生大胆的猜测,三角形的内角和是多少,有的同学猜测是100度、90度、200度,但猜测不等于结论,在这里我追问大家猜测的依据是什么?同学们并没有说出来,于是我引导大家怎样才能知道他们的内角和是多少呢,同学们想到了测量每个内角是多少,然后再求和。我又追问:怎样才能知道每个内角是多少呢?于是同学们想到了量一量,这时让同学们动手进行测量记录数据,但由于学生动手操作前教师没有对操作步骤进行要求,导致同学们在测量时分不清测量的是哪一个角,我及时引导大家把每个内角都标上序号,在进行测量,分别把他们测量的数据填写的报告单当中,因为这样导致了同学们测量的速度较慢,最终由于时间关系钝角三角形的内角和学生操作完成,在展示成果时没有进行展示,同学们只得到了钝锐角、直角三角形的内角和是接近180度的。如果我能再给学生一点点时间,学生就可以完成了,以后教学中还是应该多多放手,给学生留有先足的动手空间和时间。

  我认为数学课不仅是解决数学问题,更重要的是思维方式的点拔,使数学思想的种子播种在学生的头脑中。由于在量一量、算一算的环节中,学生初验证了三角形的内角和接近180度的,于是引导学生由180度想到平角,让学生探讨交流:怎样才能把一个三角形的三个内角转化平角。撕拼这一环节过程主要向学生展示渗透转化的数学思想的.教学目标。四年级学生在以往的数学学习过程中都积累了不少转化的体验,但在这种体验基本上处于无意识状态,只有合理呈现学习素材,才能使学生对转换策略形成清晰的认识。操作之初,一部分学生没有明确操作目的,把三个不同的三角形的角拼在了一起,我在巡视的过程中发现了这一现象后,让学生再次谈操作要求,明确操作目标,之后引导学生如何把三个角从三角形分离出来,从而部分学生想到了撕拼法,一部分学生想到了折拼法,于是我请撕拼法的你同学上台展示后,再让用折拼法的同学展示他们的方法,并给予肯定和评价,至此教学目标基本完成,学生明确知道了:三角形的内角和为180度。为了让学生更深刻的理解这一结论,我设计了一变二,和二变一的图形展示,使学生明确了所有三角形的内角和都是180度,与形状大小无关,如果时间充裕的话我想让学生探一下,增加和减少的度数源于哪里。

  数学规律的形成与深化,不仅靠感知,还要辅以灵活、有趣、有层次的课堂训练,已达到练习的有效性。对此,我设计了有层次的练习,但由于时间只有了30分钟,这一部分没有来得急提供给学生,可以说是这节课的遗憾之一。

  总之,本节课力图学生通过自主探究、合作交流,让学生充分经历知识的形成过程,让学生学会数学、会学数学、爱学数学。在教学过程中,随时会生成一些新的教育资源,课堂的生成大于课前的预设,如何有效的利用生成、有效的进行评价,是我该思考的问题,也是我今后课堂的努力方向。

《三角形的内角和》教学反思11

  本节课的内容一般作为讲授内容,只要告诉学生三角形的内角和是180度,学生记住结论教学即可完成。问题是通过这个内容的教学,我们要达到什么样的教学目标?为了达到更高的目标我把本节课定为活动课,让学生在玩中学,并从中学会学习知识的科学方法。

  课的一开始我就由两个大小不同的三角形在争论谁的内角和大入手。在学生的认知结构中,对于这场争论的结果是什么已经没有悬念了,但这样的争论会引发他们思考,为什么不同的三角形内角和会一样?是不是所有的三角形内角和都一样?这也正是我本节课要与学生共同研究的问题。这时学生想说为什么又不知怎么说,又因不知道怎么说而感情特别激动。处于这种状态的学生注意力特别集中,学习兴趣异常高涨,到了一触即发的地步。于是我让他们将课前准备好的三角形拿出来进行研究,体现学生的主体意识与参与意识。当学生通过折一折、拼一拼、撕一撕、画一画之后找到自己的验证方法时,他们体验了成功,也学会了学习。在这节课中我们共同找到了几种验证三角形内角和是180°方法。学生们拿着他们手中的三角形,在讲台上讲述自己的验证方法,虽然有的方法很不成熟,但也可以看出这个过程中,渗透了他们发现的乐趣。有的.学生将三角形的三个角都撕下来拼接到一起,有的同学将三角形的三个角沿着三角形的中位线拼在一起。当孩子们正愉悦于自己的发现时,我适时提出:四边形的内角和是多少呢?五边形的内角和是多少呢?……N边形的内角和是多少呢?孩子们求知的欲望再一次被激发,专注的研究着……当我进行提问时,还没有研究出方法的小组成员是那么用心的倾听其他同学的发言。当有的同学说要将多边形分割成学过的三角形进行研究时,他们发出赞叹的声音。于是我们进一步研究求多边形内角和的方法,他们从中体会到了探索的乐趣与成功的兴奋;于是孩子们又发现多边形外角和的奇妙之处,真是万种变化定在其中。

  这节课下课后我自己都有一点兴奋,因为我的孩子给了我意外的惊喜。但试想一下,如果我上课之初,就告诉孩子三角形的内角和为180°,并且告诉孩子我的验证方法,即便告诉的方法再多,再详细,他们学到的也只是我的有限的方法,而且是老师的方法,不是自己发现的方法。但换一种教学方式,孩子们不但找到了所有我知道的方法,也找到了我意想不到的方法,我们大家在研究中都是受益者。也许没有什么比这更让人兴奋的了。

《三角形的内角和》教学反思12

  整节课通过巧妙的设计,让学生经历了观察、发现、猜测、验证、归纳、概括等数学活动,切实体现了新课程的核心理念“以学生为本,以学生的发展为本”。具体体现在以下几个方面:

  1、精心设计学习活动,让每一个学生经历知识形成的过程。

  为学生提供了丰富的结构化的学习材料,有各类的三角形、相同的三角形等,促使学生人人动手、人人思考,引导学生在独立思考的`基础上进行合作与交流。在这一过程中发展学生的动手操作能力、推理归纳能力,实现学生对知识的主动建构。

  2、立足长远,注重长效,不仅关注知识和能力目标的落实,更注重数学思想方法的渗透。

  在验证三角形内角和是180度的过程中,有意识地引导学生认识到撕拼的验证方法其实是把三角形的内角和转化成了平角,使学生对“转化”的数学思想有所感悟;在对测量的结果出现不同答案的交流过程中,使学生认识到测量时会出现误差,从而培养学生严谨的、科学的学习态度和探究精神。

  3、遵循教材,不唯教材。

  本节课上,延伸了教材,拓宽了学生的知识面,把学生的学习置于更广阔的数学文化背景中,激起了学生对数学的强烈兴趣,激发了学生积极向上的学习情感。

  4、不足之处:

  学生在折纸验证三角形的内角和后汇报时,学生的表达不够清楚,老师的引导不能及时跟进。再次教学中,要充分发挥学生的主体作用,适时地引导好学生思考,注重学生的实际操作,同时培养学生的语言表达能力。

《三角形的内角和》教学反思13

  本节课采用逐步设置疑问,让学生动手、动脑、动口,积极参与知识学习的全过程,渗透多观察、动脑想、大胆猜、勤钻研的研讨式学习方法,培养了学生学习数学的兴趣,给学生提供更多的活动机会和空间,使学生在参与的过程中得到充足的体验和发展。

  “大胆猜想,小心求证”是科学探究的普遍规律,也是获取知识的一条重要途径。在学生已有知识的`基础上,类比猜想四边形的内角和,通过测量、计算,讨论、交流、总结出四边形的内角和为360°的规律的结论。亲身体验所得的知识,会掌握得更加牢固。引导学生学会探究总结事物所含的数学规律,提高了学生综合运用知识去解决问题的能力。探究过程中,归纳、猜想和验证的数学思想渗透,使学生感悟到数学的神奇和奥妙,提高了学生学习数学的兴趣,增强了学好数学的信心。

《三角形的内角和》教学反思14

  新课程将探究式学习作为学生学习的主要方式之一,着重点放在让学生在主动参与的过程进行学习,在探究问题的活动中获取知识并主动建构新的认知结构,了解获取知识的途径和技巧。

  这节课我设计了以“观察—猜想—验证—应用”为主线,让学生在自主学习中“不知不觉”学习到新的知识。在学生猜测三角形内角和是多少度的基础上,引导学生通过探究活动来验证自己的.观点是否正确,激发求知的渴望和学习的热情,最后达成共识。

  这节课我创设了学生喜欢的情境:“三个三角形的争吵”入手,让学生自己动手探索三角形的内角和。让学生“量一量”“剪—拼”贴近了学生的生活,降低了学习难度,注重学生们的动手实践,亲生去体验去感悟。在操作反馈的过程中我提出了两个问题:第一,你选用什么三角形,采用什么方法来验证;第二,经过操作得到什么结论。学生分小组对大小不一的三角形进行验证,经历量、剪、拼一系列操作活动,从而得出“三角形内角和是180°”这一结论。

  本节课不足之处:

  1学生在还没学习三角形的特性和三角形三边的关系及三角形的 内角和的基础上进行学习三角形内角和。就无法复习三角形的有关知识。

  2、在解决三角形内角和是什么这个问题,说的不够透彻,课后我 改成这样,先让两个学生说,说完让一个学生指出来,指完并让他用黑色水笔画出来。为验证三角形内是180度做铺垫。

  3、学生在介绍剪拼的方法时,可以让介绍的学生先上台演示是如 何把内角拼在一起,这样学生在动手操作的时候就可以节省时间。而且由于内角和这个概念没有讲清楚,学生在这一环节花了一定的时间。

  4、在学生汇报方法时,还应该用尺子比一下拼后的三个角是在一 条直线上,更直观的说明三个角形成一个平角,三角形的内角和是180°。

  5、练习设计是有分层次,但是学生说的较少,我比较急地去分析, 留给学生的时间不足这是我今后要特别注意的一个方面。

  本节课我引导学生用测量或剪拼的方法探究三角形的内角和。并会运用三角形的内角和解决实际问题,但整堂课引导的比较急躁,今后我要朝着更加完美的方向努力,我愿意锻炼和改变自己。

《三角形的内角和》教学反思15

  背景

  最近,张店区教研室举行了“青年教师优质课”评选,我们学校有位刚毕业一年的年轻教师参加。经过大家共同选教材、研究商量后,确定参评课题为“三角形的内角和”。这是新实验教材四年级下册的内容,从教材上看,教学内容比较简单,就是让学生亲自动手,通过量、剪、拼、折等方法推导出三角形内角和是180°,会应用这一规律进行计算。很显然,许多学生肯定有这样的知识经验,每个班都有部分学生已经能说出这一知识点。根据这样的现状我们让年轻教师根据自己的理解先备课、设计教学思路,随后我们进行了跟踪听课。

  试讲教学片断:

  创设情境,引入新知:

  教师先出示色彩鲜艳,用卡纸制作的学具:钝角三角形、锐角三角形、直角三角形等,让学生分辨,复习上节课的内容。学生回答的轻车熟路,感觉非常简单。继而教师拿出直角三角形,说道:“请大家画出一个直角三角形。”很快,学生便大功告成,举起画完的作品让老师看。

  老师边点头边露出赞许的微笑。接着提出第二个问题:“聪明的同学们,能不能画出有‘两个’直角的三角形呢?画画试试。”没出5秒钟,反应快的学生便脱口而出:“老师,画不出来!”老师紧接追问:“为什么呢?”学生:“因为三角形的内角和是180°,两个直角就是180°了,画不出第三个角了。所以画不成三角形。”学生说得太好了,老师赶紧接过了话题:“这位同学说三角形的内角和是180°,你们知道吗?”其他学生似乎还没明白怎么回事,只好连忙点头说知道。教师肯定的说:“是的,三角形的内角和就是180°,我们怎么想办法验证一下呢?请大家想想办法。”学生经过很长时间的合作、探究,得出了三种办法,全班交流汇报。练习分为基本练习和综合练习两个层次。学生计算的没多大问题。最后一题是思维拓展练习:研究一下四边形的内角和?五边形、六边形的内角和呢?多边形呢?因时间的关系,无一人能够想出策略。

  反思:

  教师创设情境采用的是给学生制造思维障碍的方法,让学生画出有“两个”直角的三角形,欲擒故纵,有其果,学生肯定会究其因,同时,还能让学生在体验中,寻找数学的真谛,此创设情境的方法真是妙哉。听课时,我也为他这样的设计感到高兴,心想,一定能产生好的教学效果,但事实却不是如此,学生一堂课显得比较沉闷,只有部分好学生在迎合老师,学生并没有充分的参与到数学学习中来。课后,我反复的思考,为什么会这样呢?后来发现原因有以下几点:

  一是因为教师在出示问题时,没有把“两个”直角三角形的“两个”强调清楚,有许多学生没有听清要求;

  二是因为教师没有留给学生充分的思考的时间,好学生反应快,答案脱口而出,其他学生思维还没产生任何的碰撞,更没经历实验的过程。

  三是我们现在教育体制下的学生大都缺少质疑权威的意识和习惯,显得顺从,没有主张和个性。在好学生说出三角形的内角和是180°后,其他学生对于这一知识点真正知道的有多少?但正因为是好学生的回答,在其他学生眼中,这是学习的权威啊,他说的肯定是对的,结果大家只有稀里糊涂的点头附和,是的,三角形的内角和是180度。

  在这一环节的教学中,很多学生就吃了夹生饭,根本没有透彻的理解和掌握。看似精彩的情境创设,如果得不到教师适度的调控和把握,也焕发不出它应有的光彩。

  新课标指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的`数学知识与技能、数学思想和方法,获得广泛的数学活动经验。深刻的思考、仔细的推敲以上情境的创设,也不难发现,它尽管有它的闪光点,但也有不足的地方,就是它的设计引入没有从大部分学生的知识经验出发,没有照顾到全体,知道三角形内角和是180°的学生毕竟是少数,这也就是它没能激发起学生学习欲望的原因所在。因此,在数学课堂教学中,我们要时刻注意发掘教材孕伏的智力因素,审时度势,把握时机,因势利导地为学生创造良好的教学情境 ,激发学生的兴趣,让学生在学习数学中愉快地探索。

  再者,最后一题,是在学习了三角形内角和基础上的拓展,任何多边形都可以转化为多个三角形来计算内角和,学生无一人能够想出办法,仔细想想,是我们的题目出的太难,还是学生太笨呢?都不是,是我们教师的引导作用没发挥出来,没能激发起学生学习的内部活力,也就无谈学生的动手实验、猜想、验证。当然,学生的实验、猜想、验证能力的培养并不是一堂课的问题,而是朝朝夕夕,无声无息的渗透。作为任何一个站在教学前沿的教师,我们都应有这样的教学理念,让自己的学生在数学学习中通过观察、实验、归纳、类比、推断获得数学猜想,体验数学活动丰富的探索性和创造性,感受证明的必要性、证明过程的严谨性以及结论的确定性。

  再次实践:

  经过大家的共同评课和授课教师自己的反思,我们重新改变了创设情境的方法。

  师出示一正方形纸,问:这是一张(正方形)的纸,它有(4)个角,这4个角在数学里,我们给它一个名称,把它叫做正方形的(内角),而且每个内角都是(直角),那么它的内角和是多少度呢?为什么?

  生1:正方形的内角和是360°,因为每个内角都是90°,有4个内角,就是4个90°,也就是360°。

  师:现在,我们把这个正方形纸沿着对角线剪开后会怎样呢?

  (师演示,并指导生拿出正方形纸折一折、剪一剪)

  生3:通过刚才的观察与操作,我发现这样沿对角线剪开后,得到了2个三角形,都是等腰直角三角形。

  师:谁来猜想一下其中的1个三角形的内角和是多少度?

  生:通过刚才的观察与操作,我发现三角形的内角和是180°。因为正方形的内角和是360°,沿对角线剪开后,等于把正方形平均分成了两份,也就是把360°平均分成两份,每份是180°,所以这个三角形的内角和是180°。

  生:我发现三角形的内角和是180°。因为沿正方形对角线剪开后,等于把正方形原来的直角平均分成了两份,每份是45°,两个45°加上90°就得到180°,所以我知道三角形的内角和是180°。……

  师:同学们猜的对不对呢?用什么办法可以知道?

  生:验证。

  师:对,需要经过验证。

  (分小组对三角形进行验证。看它的内角和是不是180°)

  组织学生汇报 (测量的同学边汇报边板书,剪拼的同学利用投影汇报。)

  生1:我们用量角器对3个角进行了测量,再分别把3个角的度数相加,得出了内角和为360°。

  生2:我们将这个直角三角形的两个锐角用量角器测量,把两个锐角相加是90°,再加上直角的度数,这样我们知道直角三角形的内角和是180°。

  生3:我们小组将三角形的两个锐角剪下来,然后拼在一起组成了一个直角,再把另一个直角拿来拼在一起,这样组成了平角,证实直角三角形的内角和是180°。

  生4:我们是先将一个角折过来,使它顶点落在底边上,再把另外两个角也折过来,这样三个角正好拼成一个平角,所以我们知道这个钝角三角形的内角和是180°。