乐文网>教学资源>教学反思>《因式分解》教学反思

《因式分解》教学反思

时间:2024-09-13 20:23:40 教学反思 我要投稿

《因式分解》教学反思

  作为一名优秀的人民教师,课堂教学是我们的任务之一,借助教学反思可以快速提升我们的教学能力,如何把教学反思做到重点突出呢?下面是小编为大家整理的《因式分解》教学反思,欢迎阅读,希望大家能够喜欢。

《因式分解》教学反思

  《因式分解》教学反思篇1

  讲解因式分解的定义的时候,同学们都很清楚。而我也强调的就是因式分解与乘法公式是相反方向的变形,并且在练习中一再将公式罗列出来。然后讲授提公因式法、公式法(包括平方差、完全平方公式),讲课的时候是一个公式一节课,先分解公式符合条件的形式再练习,主要是以练习为重。

  讲课的过程是非常顺利的,这令我以为学生的掌握程度还好。

  讲完因式分解的新课,我随堂出了一些综合性的练习题,才发现效果是不太好的。他们只是看到很表层的东西,而对于较为复杂的式子,却无从下手。

  课后,我总结的原因有以下四点:

  1、思想上不重视,因为对于公式的互换觉得太简单,只是将它作为一个简单的内容来看,所以课后没有以足够的练习来巩固。

  2、在学习过程中太过于强调形式,反而如何创造条件来满足条件忽略了。导致他们对于与公式相同或者相似的式子比较熟悉而需要转化的或者多种公式混合使用的式子就难以入手。

  3、灵活运用公式(特别与幂的'运算性质相结合的公式)的能力较差,如要将9-25x2化成32-(5x)2然后应用平方差公式这样的题目却无从下手。究其原因,和我布置的作业及随堂练习的单一性及难度低的特点有关。

  4、因式分解没有先想提公因式的习惯,在结果也没有注意是否进行到每一个多项式因式都不能再分解为止,比如最简单的将a3-a提公因式后应用平方差公式,但很多同学都是只化到a(a2-1)而没有化到最后结果a(a+1)(a-1)。因式分解是一个重要的内容,也是难点,我认为我对教材内容的调整是比较适合的,但是我忽略了学生的接受能力,也没有注意到计算题在练习方面的巩固及题型的多样化。在以后的教学中应该更多结合学生的学习情况去调整教学进度,多发现学生在学习方面的优势和不足之处。

  《因式分解》教学反思篇2

  课后,我认为教学目的已达到,尽管我对易错点进行了强调,但是做作业是还是出现了不少错误,说实话,以前,我会把这些学生叫过来,把这些出错的地方在给她们讲解一下,不考虑为什么会出现这样的结果。

  通过学习让我认识到:只有深入反思,才能提高我们的教学水平。只有深入反思,才能提高我们的课堂效率。最终得到我们的高效课堂。我觉得要想提高自己的教学水平,就要及时反思自己教学中存在的不足,在每一节课前充分预想到课堂的每一个细节,想好对应的措施,不断提高自己的教学水平。反思改变了我的看法,我们常会听到老师们抱怨“现在的学生怎么了,我讲了几遍还不会!到底该怎么办”,其实,在此之前我也经常抱怨,通过学习,我的.看法发生了改变,为什么换位思考一下“我的教学中存在什么问题,为什么我讲了几遍学生还听不懂?到底是我的问题还是学生的问题”大家试想一下:时代在发展,社会在进步,人类思想在变化的,学生更不是静止不变的,每个时期的学生都有不同的思想和个性、生活方式和行为习惯、处事态度和准则。

  我反省:在改变学生和改变我自己的问题上我选择改变自己,因为我无权也无法改变别人,但可以改变自己。在学生反思和自己反思的问题上我选择反思自己。因为我不能反思学生的反思,但我可以反思我自己的反思。反思对教师成长也非常重要,教学反思本身就是发生在我们身边的,我们经历过的一些事情做较深入的分析。这种分析对每位老师来说,从认识到理解一些概念,从形成一些观念,到形成和改变一些行为习惯,也都是非常重要的,它有利于我们积累和丰富经验,有利于我们成长,有利于我们成为优秀教师,从而影响着一届又一届的学生。经验不是理论,更不能代替理论。要想把经验转化成理论,是要经过反思、验证、实践、理论化的过程的。而反思是这一过程的开始。所以说反思是一件对我们每位老师成长来说都是非常重要的一件事情。

  课后我对本课进行了反思,我认为教学设计引入的过程可以简化。对于因式分解的概念,学生可通过自己的一系列练习实践去体会到此概念的特点,故不需在开头引入的地方多加铺垫,浪费了一定的时间。在设计的时候脚手架的搭建层次也不够分明。对于有关概念的建立和提公因式方法的研究,要尽可能地让学生进行讨论和辨析。让他们在发现过程中感受到学习数学的乐趣,体验成功的喜悦。

  《因式分解》教学反思篇3

  因式分解与整式乘法是逆向变形,能熟练地对一个代数式进行因式分解,是学好数学的重要方法,通过这段时间的教学,对学生存在的问题归纳如下:

  问题一:提公因式不彻底或提公因式后丢项。

  问题二:应用公式分解因式,公式应用不正确。

  问题三:分解因式不彻底。

  问题四:因式分解与整式乘法相混淆。

  问题五:代数式不能灵活的分解或灵活应用。

  解决以上问题,必须明确两个原则

  第一、 有因式分解要先提取公因式。

  第二、 每个因式要分解到不能再分为止。

  关键要做到以下几点:

  1、 什么是公因式,提公因式提什么?

  公因式的概念要叫学生明确,公因式是各项系数的最大公约数与各项所合相同字母的最底次幂的积。

  方法是:提取公因式是要先找到公因式,再把各项写成公因式和某个式子的积形式。再根据乘法分配律分解因式。

  2、 讲清公式,应用时,

  一要判断;二要化成公式形式。三明确谁相当于公式中的第一个数,谁相当于公式中的`第二个数。再应用相应的公式进行因式。

  3、对于较难多项式要提醒学生要细心观察或分组或先整理再进行分解因式,应用了以上的方法,这段时间的教学取得了一定的成绩,但也有不足。因此,在今后的教学中要多留心提示学生对因式分解的应用。

  《因式分解》教学反思篇4

  公式法进行因式分解,虽然应用的公式只是三条,但要灵活应用于解题却不容易。逆用平方差公式进行因式分解相对来说还是稍微简单些。

  逆用平方差公式进行因式分解关键还是要搞清平方差公式(a+b)(a-b)=a2-b2的结构特点:公式的左边是这两个二项式的积,且这两个二项式有一项完全相同,另一项互为相反数,公式的右边是这两项的平方差,且是左边的相同的一项的平方减去互为相反数的一项的平方。

  有了前边学习平方差公式为基础,逆用平方差公式进行因式分解只需要转换思维即可。但对学生来说,还是相当困难的。逆用平方差公式进行因式分解的步骤可分三步:

  1、写成两项平方、差的形式,即找到相当于公式中a、b的项。

  2、按公式写出两项积的形式,即因式分解。

  3、两项中能合并同类项的各自合并。

  例题及练习的'呈现次序尽量本着先易后难的螺旋上升原则。

  1、a、b代表单独的数字或字母,如:(1)m2-9(2)16-y2

  2、a、b代表单独的数字、字母或只含数字、字母的单项式。

  如:(1)4b2-9c2(2)m2n2-25

  3、a、b代表多项式,如:(1)(2a+b)2-(a-b)2

  (2)-(a+b+c)2+(a-b-c)2

  在此要有“整体思想”的意识,注意:+部分的底数作为一个整体相当于a,-部分的底数作为一个整体相当于b,然后再套用公式。

  尽管课前进行了充分的准备工作,但是学生作业中仍暴露出许多问题:

  1、不会找a、b

  2、思维僵化,对于与公式相同或者相似的式子而需要转化的或者多种公式混合使用的式子难以入手,说明灵活运用公式的能力较差,如要将9-25X2化成32-(5X)2然后应用平方差公式这样的题目却无从下手

  3、因式分解要养成先提公因式的习惯,结果要注意到是否进行到每一个多项式因式都不能再分解为止,比如最简单的将a3-a提公因式后应用平方差公式,但很多同学都是只化到a(a2-1)而没有化到最后结果a(a+1)(a-1)

  因式分解是一个重要的内容,也是难点,要根据学生的接受能力,注意到计算题在练习方面的巩固及题型的多样化,相应地对教材内容及教学进度做出调整。

【《因式分解》教学反思】相关文章:

《因式分解》教学反思范文08-04

《因式分解》教学反思范文[精]10-03

《鲸》教学反思鲸鱼教学反思08-04

《学会反思》教学反思11-17

关于教学反思的反思06-01

教学的反思09-22

《》教学反思05-16

教学反思05-25

经典教学反思07-15

教学反思06-08