乐文网>教学资源>教学反思>九年级数学《圆的性质》教学反思

九年级数学《圆的性质》教学反思

时间:2024-11-02 05:00:09 教学反思 我要投稿
  • 相关推荐

人教版九年级数学《圆的有关性质》教学反思

  身为一名刚到岗的人民教师,我们要在课堂教学中快速成长,教学反思能很好的记录下我们的课堂经验,那么什么样的教学反思才是好的呢?下面是小编精心整理的人教版九年级数学《圆的有关性质》教学反思,仅供参考,欢迎大家阅读。

人教版九年级数学《圆的有关性质》教学反思

人教版九年级数学《圆的有关性质》教学反思1

  本节课成功之处有以下几点:

  1、让学生的数学学习贴近生活。

  数学来源于生活,并用于生活。初中数学,虽然知识越来越抽象,但是只要我们用心发现,还是可以找到现实生活中的素材。作为一名数学教师,要让学生体会他们学习的是有意义的数学,这些知识是与生活息息相关的,从而激起学生学习数学的兴趣。

  在本节课的开头,利用多媒体课件展示生活中的圆形,学生在享受数学美的同时也深切地感受到生活离不开圆,体会到学习圆的重要性。虽然小学阶段学生已经对圆的有关知识有所了解,但只是一种感性认识,知道一个图形是圆,还没有抽象出“平面上到定点的距离等于定长的所有点组成的圆形叫做圆”的概念。本节课主要是让学生通过观察,把圆与车轮作类比,结合圆规画圆,得出圆的本质特点“圆周上的点到圆心的`距离处处相等”后,就容易归纳出圆的定义。点和圆的位置关系也可以从生活中找到原型。已投射的飞镖和靶的位置关系就是一个很好的例子,它是学生既熟悉又比较感兴趣的事物。例1的应用更让学生体会生活中有数学,数学是解决实际问题的工具。

  总而言之,本节课确实让学生感到学习数学也就是关注生活,只不过给生活中的这些现象以新的说法。所以抽象的数学也就显得简单了,学生也就更加喜欢学数学了。

  2、改变了学习方式。

  《新课标》指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与交流合作是学生学习数学的重要方式。”为此,我在课堂中给学生动手操作的机会,让每位学生用圆规在本子上画圆,同时要求他们动脑,动口,通过画圆过程体会圆的特点,以便于归纳圆的概念。让四位学生分两组合作在黑板上画圆,还让他们谈谈合作成功的经验(一位一定要固定好圆心,另一位一定要拉紧绳子的另一端粉笔头在黑板上绕一周)。所以得出确定圆需要两个要素即圆心和半径。在必要时,教师也让学生小组合作互相讨论,充分利用集体的智慧,使之能够解决较难的问题。

  3、问题设计符合学生的认知规律。

  从情境动画片中的车轮到为什么车轮要做成圆形,圆形车轮有什么特点把

  圆与车轮作类比有什么相似之处……,这些问题的设计非常连贯,学生也很主动地围绕“问题串”思考,自然地得出了圆的概念,解决了本节课的难点。再是例1的具体应用,再次让学生体验数学来源于生活并用于生活。

人教版九年级数学《圆的有关性质》教学反思2

  1、突出了数学课堂教学中的探索性

  关于圆的内接四边形性质的引出,在本教学案例上没有像教材那样直接给出定理,然后证明;而是利用《几何画板》采取了让学生动手画一画,量一量的方式,使学生通过对直观图形的观察归纳和猜想,自己去发现结论,并用命题的形式表述结论。关于圆内接四边形性质的证明,没有采用教师给学生演示定理证明,而是引导学生证明猜想,并做了进一步的完善。这种探索性的数学教学方式在其后的例题讲解中亦得到了进一步的贯彻。这样既调动了学生学习数学的积极性和主动性,增强了学生参与数学活动的意识,又培养了学生的动手实践能力。同时,也向学生渗透了实践——认识——再实践——再认识的辩证观点。一方面,使数学不再是一门单调枯燥,缺乏直观印象的高度抽象的学科,通过提供生动活泼的直观演示,让学生多角度,快节奏地去认识教学内容,达到事半功倍的教学效果;另一方面,计算机所特有的,对数学活动过程的展示,对数学细节问题的处理可以使学生体验到用运动的观点来研究图形的思想,让学生充分感受到发现总是代和解决问题带来的`愉悦,培养学生的数学创新意识。

  2、引进了计算机《几何画板》技术

  本课例在引导学生得出圆内接四边形的性质时,通过使用《几何画板》,从而实现了改变圆的半径,移动四边形的顶点等,从而使初中平面几何教学发生了重大的变化,那就是让图形出来说话,充分调动学生的直觉思维。这样一来不仅极大地激发了学生学习的兴趣,而且比过去的教学更能够使学生深刻地理解几何。当然,本教学案例在这方面的探索还是初步的,设想今后通过计算机技术的进一步开发与应用,初中平面几何课能够给学生更多动手的机会,让学生以研究的方式学习几何,进一步突出学生在学习中的主体地位。

  3、引入了数学开放题

  本教学案例在增大数学课堂教学的探索性,计算机技术进入数学课堂的同时,在学生作业中还增加了开放题(作业2),为学生创造了更为广阔的思维空间,对此应大力提倡。目前,世界各国在数学教育改革中都十分强调高层次思维能力的培养,这些高层次思维能力包括了推理,交流,概括和解决问题等方面的能力。要提高学生这种高层次的思维,在数学课堂教学中引进开放性问题是十分有益的。我国的数学题一直是化归型的,即将结论化归为条件,所求的对象化归为已知的结果。这种只考查逻辑连接的能力固然重要,并且永远是主要部分,但是,它不能是惟一的。单一的题型已经严惩阻碍了学生数学创新能力的培养。在数学教学中还可将一些常规性题目发行为开放题。如教材中有这样一个平面几何题“证明:顺次连接四边形四条边的中点,所得的四边形是平行四边形。”这是一个常规性题目,我们可以把它发行为“画一个四边形是什么样的特殊四边形,并加以证明。”我们还可用计算机来演示一个形状不断变化的四边形,让学生观察它们四条边中点的连线组成一个什么样的特殊四边形,在学生完成猜想和证明过程后,我们进而可提出如下问题:”要使顺次连接四条边的中点所得的四边形是菱形,那么对原来的四边形应有哪些新的要求?如果要使所得的四边形是正方形,还需要有什么新的要求?”通过这些改造,常规题便具有了“开放题”的形式,例题的功能也可更充分地发挥。在此,我们进一步强调培养学生创新意识的数学课堂教学,不应仅仅把开放题作为一种习题形式,而应作为一咱教学思想。这种教学思想反映了数学教学观的转变,这主要反映在开放性问题强调了数学知识的整体性,数学教学的思维性,数学解决问题的过程性,强调了学生在教学活动中的主体作用于以及有利于提高学生学习的乐趣,提高了学生学习的内在动力等。

【九年级数学《圆的性质》教学反思】相关文章:

《圆的认识》数学教学反思07-07

《圆的周长》数学教学反思10-28

比的性质教学反思05-12

《圆的周长》数学教学反思精选15篇06-10

《圆的周长》数学教学反思15篇06-30

《圆的周长》数学教学反思(15篇)06-29

小数的性质教学反思(精选)09-09

《等式的性质》教学反思10-19

菱形的性质教学反思08-21

菱形性质教学反思09-22