乐文网>教学资源>教学反思>八年级数学下册《分式》教学反思

八年级数学下册《分式》教学反思

时间:2024-09-26 01:20:03 教学反思 我要投稿
  • 相关推荐

八年级数学下册《分式》教学反思

  作为一名人民教师,我们要有很强的课堂教学能力,借助教学反思我们可以快速提升自己的教学能力,快来参考教学反思是怎么写的吧!以下是小编帮大家整理的八年级数学下册《分式》教学反思,欢迎大家分享。

八年级数学下册《分式》教学反思

八年级数学下册《分式》教学反思1

  一.设计思路:

  设计思路建立在我校目标教学的前提下,由学生自主导学,然后再由教师考查和点拨,但是由于种种原因,我最终决定给学生一个半开半闭的区间。这节课的关键在前面的这步过渡,究竟是给学生一个完全自由的空间还是说让学生在老师的引导下去完成,我先后作了多次试验和论证,认为“完全开放”符合设计思路,但是学生在有限的时间内难以完成教学任务,故我们最终决定和学生一起共同完成。

  二.教学知识点:

  1.在本课的教学过程中,掌握范围分式方程的解法是关键,所以由两个习题过渡后,我复习了一元一次方程的解法,然后引导学生尝试利用解一元一次方程方法的基础上一起探索探索解分式方程的.解法。我先作一示范,学生练习格式,接着出现有增根的练习题,依然让学生解决,由于学生不会检验根的情况,所以,些时再详究增根产生的原因,怎样检验增根等问题。

  2.在利用类比法解分式方程这一过程中,分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应渗透种化归思想的教学。

  3.本节课的难点是对分式方程可能产生增根的原因,我为了让学生更深刻的理解就用了两个分式方程的解答过程进行对比,体现验根的重要性及必要性,

  充分体现学生为主体,教师为主导的教学体系。

  三.课堂效果:

  在这节公开课上,学生状态不错,所有的学生都能积极思考,踊跃回答问题,在课堂练习和最后的课堂小测里,学生的作答规范正确,而且对于增根产生的原因及相关知识点的难题的突破学生掌握的不错。

  整节课下来,基本能够达成教学目标,但是作为年轻教师,我在一些细节的处理上仍然需要改进。个别教学语言不够规范,而且利用新知识的学习过程,对旧知识的复习仍然不够,语速有点快,个别问题的引导可以更深层次,没有充分放手让学生突破难点,也是比较遗憾的地方,希望听课的老师给我多提意见,我会珍惜的。

八年级数学下册《分式》教学反思2

  《分式的基本性质》是分式一章的重点,这一章教学效果的好坏,将直接影响到整个分式的学习,课本是通过算术中分数的基本性质,用类比的方法给出分式的基本性质,学生接受起来并不感到困难,但是要使学生达到透彻地理解,却并不是一件容易的事。因此我在教学时采用师生共同体会关键字眼在分式概念表述中的重要性和指导练习习题的不可忽视性。

  当使用分数的基本性质时,虽然也强调用以同乘(或除)m≠0的数,但在实际应用时,几乎没有用零去乘(或除)的可能,所以使用性质的这个根本性的限制条件常常被忽略了。而在代数中,m常是一个含有字母的.代数式,就有m=0的可能性。所以每当我们应用这个性质时,都应首先考虑一下这个用以同乘(或除)的整式的值是否为零?随时注意在怎样的条件下应用这个性质的。我们在教学中应使学生养成使用分式基本性质的严谨的习惯。

  通过教学,学生对分式的基本性质有了一个较好的理解,这就为下面讲分式的变形奠定了良好的基础。整堂课取得了良好的教学效果。不足之处在于对于分数的基本性质与分式的基本性质能进行类比的本质理解不够,作业中仍有部分学生没有考虑分子、分母同乘以或除以的字母是否为0。

八年级数学下册《分式》教学反思3

  列方程解应用题七年级一年就遇到了三次,一元一次的,二元一次的,还有这次的分式的,步骤基本上一样,审、设、列、解、验、答。

  问题还是出现在审题上,其实方法也类似,找已知的未知的.量,找描述等量关系的语句,可以列表分析,还可以直接将文字转化为数学式子,我经常在启发时说,某某同学刚才回答时为什么能很快找到等量关系呢,是因为他知道要关注那些重要的东西,比如数据,比如题中出现的量,等等,就想语文阅读时弄清楚时间,人物,事情一样。

  于是在课堂上例题的分析,我总是把大量的时间放在启发学生理解题意上,老实说就算是语文的课外阅读,学生多读几遍也总读点味道出来了,可对于数学问题,有些学生读了一遍题目愣是一点感觉没有,对数字稍微敏感一点的也能找到相应的量吧,但就是这些,让学生最头疼的,最郁闷,想得抓狂了还是找不到等量关系。

  还是多留给学生点思考的空间吧。其实大多数的学生在老师的启发下还是能对问题的理解深刻一点的,题目做的多了,总会产生一些感觉,套用一句老话,质变是量变的积累,量变到了一定的程度就会发生质变,希望我和学生们的努力能让质变早日到来。

八年级数学下册《分式》教学反思4

  在本节课的教学过程中首先明确目标是让学生如何找到等量关系,书本原先给出两个例子较难达到这个教学效果,原因是学生对毛利率的概念本身不清楚,按照书本的引入,一开始课堂就可能处以一种安静的思维很难打开的状态,不能有效地激发学生学习兴趣与激情,所以才用学生经过自己努力思考之后完全能解答的题目作为第一题,让学生体会到成功的喜悦,这样学生才会愿意继续探索与学习;其次应用题的难度设置上是层层深入,提问是分层次性,能够让不同层面的学生都有不同的体会与感受。

  将“毛利率”概念的问题采用调查的方法,能够有效发挥学生右脑在形象思维上优势,从而为后面的解答抽象的逻辑、左脑理性思考做了准备;能够最大限度发挥学生原有的能力。

  公式变形,书本例题是才用将右边先进行变形,再倒过来分析,我认为学生的'解答方法更具有对称美,在课堂中予以充分的肯定,这一方面培养学生的审美能力、更重要的是肯定学生进行思考的价值、从而激发学生思考的意愿与热情!

  其实任何一节课的教学设计以及对课堂的动态把握只能针对具体实际情况进行调整分析,如果学生对“毛利率”等概念已经非常熟悉、阅读理解能力很强那么这节课的教学设计肯定是另一番样子。

八年级数学下册《分式》教学反思5

  本节课要求学生理解并掌握分式的加减运算法则,会运用它们进行分式加减运算。

  为了完成教学目标,我先让学生做两道同分母分数加减法的计算题,让学生通过类比的方法,得出同分母分式运算法则及注意事项,然后遵循由浅入深,由简到繁的原则,先讲同分母分式的加减,同分母分式的加减法比较容易,它是进一步学习异分母分式加减法的基础。异分母的分式加减运算与同分母分式加减运算相比要因难一些。这里主要是做好"转化”工作,即把异分母的分式加减运算转化为同分母的分式加减运算,“转化”的关键是通分,而最简公分母的寻找是通分的关键,因此可先通过异分母分数的加减方法,与异分母分式的加减相类比,找出各分母系数的最小公倍数,各分母所有因式的最高次幂的乘积作为最简公分母,然后再通分。

  另外,这节课为了达到教学目标,突出重点,通过问题的提出,学生的列式,从对同分母分数加减法法则类比出同分母分式的加减法法则,从对异分母分数的加减类比出异分母分式的`加减法法则,同时引导了学生把一个实际问题数学化。低起点,顺应着学生的认知过程,阶递式的设置台阶,使学生自然的归纳出法则,在运用法则的重点环节上,无论是例题的分析还是练习题的落实,都以学生为中心,给足充分的时间让学生去演算,暴露问题,再指出问题所在,为后一步的教学提供较好的对比分析的材料。引导学生发现总结多种解题技巧,并比较优劣,通过分析题目的显著特点,来灵活运用方法技巧解决问题,锻炼和培养他们的发散思维能力。

  在教学中还存在着很多不足,在今后的教学中进一步改善。

八年级数学下册《分式》教学反思6

  通过分数与分式的比较,培养学生良好的类比联想的思维习惯和反思方法;通过分数与分式的类比,向学生渗透矛盾转化的辩证唯物主义观点,并培养学生严谨的科学态度。本节课对分式经过引入,掌握,熟练,提高的过程,既学习了知识,又获得了知识,又获得了思维能力的提高。但本节课的`不足之处是,符号规律的讲解不充分,学生掌握的不够扎实,在合适的机会里需要强化练习。

八年级数学下册《分式》教学反思7

  上一周刚刚讲完分式的运算这部分知识,感受很深。学生们在刚学习这部分内容时,并不顺利,一方面是来自对因式分解知识的遗忘,另一方面是不掌握算理。要想更好得让学生掌握这部分知识,除了引导学生解决以上的问题之外,作为一个教师还必须做到心中有数:分式的四则运算是分式这一章的重点,主要是会进行基本的运算,而不是计算的繁和难,教学时,可以根据学生的具体情况,适当增加例题、习题,让学生熟练掌握分式的运算法则。但与整式、分数的运算相比,分式的'运算步骤多,符号变化复杂,所以在增加例题、习题时,要注意控制难度,特别是不要在分子、分母的因式分解上增加难度。关键是让学生通过基本的练习,掌握算理,弄清运算依据,做到步步有据,减少计算的错误率。

八年级数学下册《分式》教学反思8

  下面是我在教学中的几点体会:

  一、教学中的发现

  (1)分式的运算错的较多。分式加减法主要是当分子是多次式时,如果不把分子这个整体用括号括上,容易出现符号和结果的错误。所以我们在教学分式加减法时,应教育学生分子部分不能省略括号。其次,分式概念运算应按照先乘方、再乘除,最后进行加减运算的顺序进行计算,有括号先做括号里面的。

  (2)分式方程也是错误重灾区。一是增根定义模糊,对此,我对增根的概念进行深入浅出的阐述:

  1.增根是分式方程的去分母后化成的整式方程的根,但不是原方程的根;

  2.增根能使最简公分母等于0;二是解分式方程的步骤不规范,大多数同学缺少“检验”这一重要步骤,不能从解整式方程的模式中跳出来;

  (3)列分式方程错误百出。

  针对上述问题,我在课堂复习中从基础知识和题型入手,用类比的方法讲解,特别强调列分式方程解应用题与列整式方程一样,先分析题意,准确找出应用题中数量问题的相等关系,恰当地设出未知数,列出方程;不同之处是,所列方程是分式方程,最后进行检验,既要检验是否为所列分式方程的解,又要检验是否符合题意。

  二、教学后的反思

  通过这节课的教学及课后几位专家的.点评,这节课的教学目的基本达到,不足之处本节课的容量较大,如果能采用多媒体教学效果会更好;在以后的教学中我将继续努力,提高自己的教学水平。

八年级数学下册《分式》教学反思9

  通过例题由我先作一示范,学生练习格式,接着出现有增根的练习题,依然让学生解决,由于学生不会检验培根的情况,所以,些时再详究增根产生的原因,怎样检验增根等问题。

  这节课的关键在前面的这步过渡,究竟是给学生一个完全自由的空间还是说让学生在老师的引导下去完成,我们先后作了多次试验和论证,认为“完全开放”符合设计思路,但是学生在有限的时间内难以完成教学任务,故我们最终决定采用第二套方案。

  在本课的教学过程中,我认为应从这样的几个方面入手:

  1、分式方程和整式方程的区别;

  2、分式方程和整式方程的联系;

  3、解分式方程时,如果分母是多项式时,应先写出将分母进行因式分解的步骤来,从而让学生准确无误地找出最简公分母;

  4、对分式方程可能产生增根的`原因,要启发学生认真思考和讨论。

  课堂效果:在这节课上,11班学生状态非常好,所有的学生都能积极思考,踊跃回答问题,感觉这节课的效果还是不错的。

八年级数学下册《分式》教学反思10

  经历了两周的学习,学生已基本掌握了分式的有关知识,并且获得了学习代数知识的常用方法,感受到代数学习的实际应用价值。下面是我在教学中的几点体会:

  一、教学中的发现

  本章可以让学生通过观察、类比、猜想、尝试等活动学习分式的运算法则,发展他们的合情推理能力,所以教学时重点应放在对法则的探索过程上。一定要让学生充分活动起来。在观察、类比、猜想、尝试当一系列思想活动中发现法则、理解法则、应用法则,同时还要关注学生对算理的.理解,以培养学生的代数表达能力、运算能力和有理的思考问题能力。可是我在知识的传授上并没有注重探索、类比法则,而重在对分式四则运算法则的运用和分式方程的运用上,没有抓住教学的关键环节恰当的选择教学方法。今后要避免类似事情的发生。

  二、教学中的重建

  分式运算是代数恒等变形的基础之一,但是不能盲目的加大运算量与题目的难度,重点应放在对运算过程推理的理解上。

  另外,对《教材》上关于分式的具体问题一定要重视,并关注学生在这些具体活动中的投入程度,看他们能否积极主动地参与,其次看学生在这些活动中的思维发展水平——能否独立思考,能否用数学语言表达自己的想法,能否反思自己的思维过程,进而发现新的问题。

八年级数学下册《分式》教学反思11

  1、教学理念的把握

  本节课本着“三为主,五环节”的教学模式,主要突出了学生的主体地位,教师的主导作用,学生学会学习为目的,数学落实训练为主线。

  2、题目的设计与处理

  以问题串的形式抛出问题,从易到难,分解了难点,让学生在独立思考和合作交流中及解决了问题又实现了对新知的学习。,重视学生的学习过程,教师注重方法点拨,策略知道,规律型的东西的总结。

  3、课堂氛围的转变

  整节课以“流畅、开放、合作、‘隐’导”为基本特征,教师对学生的

  思维减少干预,教学过程呈现一种比较流畅的特征。整节课学生与学生,

  学生与教师之间以“对话”、“讨论”为出发点,采用独立思考,以互助合作,讲台展示,屏幕讲解,等手段以解决问题为目的,让学生在一个比较宽松的环境中自主选择获得成功的方向,判断发现的价值。

  4.对学生做出正确的评价

  对于学生的回答给予正确的评价,鼓励语言到位。

  5.学生亮点:整堂课,学生的表现非常优秀,在一位女生讲解问题二的之前,我还担心她说不清,但是却把每个空都用等量关系先表达出来,然后又用分式或整式的形式填写,做到了“空空有等量,步步有依据”,她的回答太精彩了,同学们给了她热烈的掌声,所以我们一定要放开手,不要吝啬自己的“三尺讲台,让这块宝地变成学生的地盘。

  师生关系:通过这节课,发现和学生的关系更亲近了,在课上老师和学生就像朋友,教师要走到学生中,聆听她们想法,并参与其中。征求她们的意见。

  6.应急处理恰当:在这节课上,学生的积极性超出了课前设想,在处理“捐款问题”中,很多同学都直接站起来要回答问题,,因为这节课,他们表现的太优秀了,于是我征求其中一位同学的意见,问他可不可把这样的机会让他其他同学,他欣然的答应了,而且是让给了我们班最羞涩的一位男生,这时候我看着他怯生生的看我的眼神,我面带微笑说“李斐同学是比较羞涩的,但他学习认真刻苦,请同学们给他加油”这时候,教师想起了一片掌声,当他还是有点不好意思的将问题讲完的时候,我顺势说“他说的好吗”同学们都说好,于是又是一片掌声。当他回到座位要坐下的时候,我及时问了一句“有信心了吗”这次他的`声音很响亮“有了”这样我和我的学生就完成了一次对性格胆怯的学生的信心教育,同时这样的处理方式又培养了同学们谦虚,谦让,团结互助的精神。

  7.不足,由于时间原因,擂台大比拼没有能够圆满完成,本来是想过这道问题,让大家知道一到应用题可根据不同的等量关系列出不同的方程,并能够识别哪些是分式方程,一道题可以同时考核两个学习目标,并设想通过学生独立完成在小组汇总,让学生主动到黑板写自己的答案,来培养同学们积极进取,勇于竞争的意识和团结合作的精神。以后教学中要对时间还有好好把握,及时调整,收放自如。

八年级数学下册《分式》教学反思12

  一、设计思路:

  在学习本章之前已学过了一元一次方程的解法,对解整式方程特别是一元一次方程的解法思路比较了熟悉,在教受本节课是要改变教师讲例题,学生模仿的教学模式,通过说一说,试一试,想一想,练一练等多个教学环节,

  由学生预习,自主学习,然后再由教师考查和点拨,但是由于种种原因,最终决定给学生一个半开半闭的区间,我先作一示范,学生练习格式,接着出现没有根的练习题,依然让学生解决,由于学生不会检验培根的情况,所以,再详究没有根产生的原因,怎样检验没有根等问题。

  这节课的关键在前面的这步过渡,究竟是给学生一个完全自由的空间还是说让学生在老师的.引导下去完成,我们先后作了多次试验和论证,认为“完全开放”符合设计思路,但是学生在有限的时间内难以完成教学任务,故我们最终决定采用第二套方案。

  二、教学知识点:

  在本课的教学过程中,我认为应从这样的几个方面入手:

  1.分式方程和整式方程的区别:分清楚分式分式方程必须满足的两个条件,⑴方程式里必须有分式,⑵分母中含有未知数。这两个条件是判断一个方程是否为分式方程的充要条件。同时,由于分母中含有未知数,所以将其转化为整式方程后求出的解就应使每一个分式有意义,否则,这个根就不是原方程的根。正是由于分式方程与整式方程的区别,在解分式方程时必须进行检验。

  2、分式方程和整式方程的联系:分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应充分体现这种化归思想的教学。

  3、解分式方程时,如果分母是多项式时,应先写出将分母进行因式分解的步骤来,从而让学生准确无误地找出最简公分母

  4、对分式方程可能产生没有根的原因,要启发学生认真思考和讨论。

八年级数学下册《分式》教学反思13

  本节课在学生的认知水平和已有的知识经验基础上充分调动学生学习的自主性,让学生通过观察、类比的方式探究解分式方程的思路和方法,为学生提供了充分从事活动的机会,使学生在回顾与思考、合作和讨论的过程中理解和掌握知识与技能,体验感受过程、方法和数学思想,培养情感态度价值观,从而达成教学目标。

  本节课关于分式方程的增根的教学,是通过创设小亮解法的情境,引导学生通过思考探索、阅读理解、动手解题等手段,从而获取知识、形成技能,发展思维,学会学习,而不是由教师去讲解增根的概念和产生原因。

  本节课小结采取了学生提出问题、教师解答问题的形式.这种方法一方面为学生搭建了展示自己的平台,设置了独立思考的想象空间,提供了锻炼表达能力的`机会;另一方面也为教师能及时弥补教学中存在的漏洞创设了条件和可能.不过,若时间允许的话,有些问题可以由学生讨论解决。

  教学环节是否可行,最终是由教学目标是否达成来检验和评价的.所以本节课的某些教学环节对目标的达成是否行之有效,还有待于在今后的教学过程中不断实践和完善。

【八年级数学下册《分式》教学反思】相关文章:

分式教学反思07-05

分式的加减教学反思09-29

《分式加减》教学反思08-02

分式的乘方教学反思02-28

《分式方程》教学反思09-18

分式方程教学反思02-19

《分式方程》教学反思10-15

分式的基本性质教学反思08-03

分式的加减教学反思11篇08-02

八年级数学下册教学反思07-19