乐文网>教学资源>教学反思>垂直平分线性质教学反思

垂直平分线性质教学反思

时间:2024-07-15 11:30:50 教学反思 我要投稿
  • 相关推荐

垂直平分线性质教学反思

  作为一名人民教师,课堂教学是我们的任务之一,我们可以把教学过程中的感悟记录在教学反思中,写教学反思需要注意哪些格式呢?以下是小编收集整理的垂直平分线性质教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。

垂直平分线性质教学反思

垂直平分线性质教学反思1

  1、情境创设改采用七年级学习过的建水电站问题,即将水电站建在何处到在河同一侧的两个村庄的距离之和最短?在学生回忆并解决后将问题变为“建在何处到两个村庄的距离相等?”,这样的设计避免了死板的套入教学内容,不但符合学生的元认知结构,还可以极大的调动学生的学习积极性,使学生快速融入到教学之中,而且题目设计实现知识的纵向迁移,加深了学生对知识的理解、内化,形成自我知识体系,教学实践证明效果显著。

  2、在创设出上面情境引入教学内容的同时,引导学生作出图形,在解决第二个问题时很多学生首先并未考虑到线段的垂直平分线的使用,而是先找中点,再作垂直,此时如果着急的让学生考虑直接使用线段的`垂直平分线就会打破学生的认知结构,下面的教学内容也只是强加而已。为此,教学中极力鼓励学生作图并阐述理由,然后再引导学生结合图形体会到线段的垂直平分线的存在及性质,这样,既尊重了学生的学习兴趣,又符合学生的认知结构,并且结合图形掌握知识达成度较高。

  3、在完成了线段的垂直平分线的性质和判别学习后,加上了两道题目加以巩固,尤其第二题,通过设计了一道线段的垂直平分线的判别题目进一步加深了学生对判别的掌握和使用,纠正了学生认为找到一个点到线段两个端点距离相等,这个点所在直线一定是线段的垂直平分线的片面认识,将这节课的难点顺利突破,并且为线段的垂直平分线的尺规作图做好了铺垫。

  通过上面的教学“灵感”的教学效果来看,确实在教学中起到了意想不到、锦上添花的作用,而这种灵感来源于仔细的钻研教材,切合学生实际的设置教学环节,并非异想天开,偶然所得。

垂直平分线性质教学反思2

  反思整个教学过程,我觉得有以下几个地方值得肯定:

  这节课通过动画引导学生回忆以前学过的知识,增强了吸引力。在逆命题的引出部分通过让学生自己动手画出以线段AB为底边的等腰三角形,观察得到顶点在线段AB的垂直平分线上。学生在画的过程中可以直观感受数学知识,符合学生的认知发展规律。《新课标》指出:“重视教学内容的展开方式,努力帮助学生用自己的智慧去获取、发展数学知识。”接着引导学生发现前后两个命题的内在联系。在对逆命题的证明上,采取合作交流及积极引导的方式,发挥教师的.主导作用及学生学习的主动性,使学生的学习过程成为在教师引导下的再创造过程。

  新课程要求教师不能是单一的课程执行者,而应是能够依据课程内容、学生的具体情况,对课程进行整合处理的实施者。对本节课的难点问题一:文字语言与符号语言的转化。

  我采取了提前学习,逐步探索,分散难点的方法。课前学习了“等边对等角”及“等角对等边”的证明,也做过一些相应的文字语言转化为符号语言的练习,所以这节课让学生回忆转化的步骤,按照以前的方法,先画出相应的图形,再找出命题的题设,根据题设结合图形写出已知;同样找出命题的结论,结合图形写出求证。课上总结这类问题的解决方法,使学生的知识内化、巩固加深。对本节课的重、难点问题二:命题及逆命题的证明及应用。我采取了逐个突破的办法。学生证明完命题后及时做两道相应的练习巩固。练习由浅入深,由易到难,激发学生的潜能,使不同的学生得到不同的发展。对逆命题的证明,我采取了小组讨论、合作交流、教师引导的办法。引导学生发现图形中缺少证明所需的线,使学生想到要作辅助线,再进一步讨论得出可以添加什么样的辅助线。对学生提出的几种辅助线进行分析是否合适,从而命题得证。学生在练习本上写出证明过程,随机抽取几个同学的证明过程用投影仪展示,同时老师指正修改。多媒体技术的应用提高了课堂效率。接着提出一道练习和一道生活中的实际问题,将数学应用到实际生活中,使学生体验到数学的价值。

  教学永远是一门遗憾的艺术。本节课有几个地方我做的还不够好:

  在证明命题和逆命题后,应再次强调一下两个命题的内容,使学生明确知识点;在学生回答问题时,应给学生充分思考的空间,分析答案的可行性。

  通过这一次的“成长”,我对教材的理解有了进一步的加深,教学语言的规范性得到了加强,对学生的认知规律有了更深层的认识。相信在今后的教育教学中我会做得更好。

垂直平分线性质教学反思3

  《线段的垂直平分线》的性质定理及逆定理,是几何中的重要定理,也是一条重要轨迹,在几何证明、计算、作图中都有重要作用。上完本节课后,通过其他老师交流,自己静心反思,我主要有以下体会:

  一、课前的认真准备是上好一节课的关键。

  作为一名教师要想上好一节课,其实并不是一件容易的事。要想给学生“一碗水”,自己必须具有“一桶水”,所以教师课前准备时必须认真钻研教材,领悟教材内涵,并能分析出这节课在整册教材中的地位、作用及前后关系,这样才能有的放矢。但是由于我在上这一节课的时候,连着前面轴对称的性质的内容一起上了,从而导致内容太多,重难点没有很好的突出。

  二、在教学活动过程。

  整个教学过程中,没有很好体现以学生发展为本的精神。虽然从问题的导入,性质,判定的引出都是由学生动手操作讨论得出,但是由于我在安排这节课的时候,准备要讲得内容太多,导致很多时候都是我一个人在讲学生在听,学生动手写练习的时间就变得很少。再者这节课的重点是线段垂直平分线的性质和判定,我也没有很好的突出重难点。虽然有很多不足之处,我觉得有些地方还是可取的,如:

  1、注重数学思想方法的渗透。

  如在学生通过“画一画”“量一量”“猜一猜”活动得出命题“线段的垂直平分线上的点和这条线段的两个端点的距离相等”时,让学生结合图形写出已知、求证,这正是数形结合思想的渗透。

  2、注重学生几何语言的训练

  在学生总结出定理和逆定理后,引导学生根据文字结合图形写出它相应的几何语言,这为学生做证明题时的推理打下基础。

  本节课得到的定理为:线段的垂直平分线上的`点和这条线段的两个端点的距离相等。

  用几何语言表示为:∵MN是AB的垂直平分线,点P为MN上的任意一点(已知)。

  ∴PA=PB(线段的垂直平分线上的点和这条线段的两个端点的距离相等)

  通过这个几何语言的表述又可以强调今后已知线段的垂直平分线存在,证线段垂直平分线上的点到这条线段的两个端点的距离相等时,直接用这个定理即可,不用再通过证三角形全等而得出,防止学生课后应用时走弯路。

  逆命题为:和一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上。

  用几何语言表示为:

  ∵PA=PB(已知)。

  ∴点P在AB的垂直平分线MN上。

  (和一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上)

  3、整堂课课堂效果较好,学生参与的积极性较高,课堂气氛较好。学生对问题的探索、研究反应较好,接受、吸收情况也比较好。通过本节课的学习,基础较好的学生不仅会使用线段的垂直平分线的定理及逆定理解决问题,而且在探索发现问题能力方面有很大的进步。

  三、教后反思。

  针对这一节课中出现的问题,我做出了如下的反思:首先在备课的时候,一定要抓准重难点,安排好一节课的内容,抓准一节课的时间;其次一定要体现以学生为主的原则,要讲练结合,给学生足够多的时间做练习,充分理解接受新的知识。在今后的教学中,我一定不断不改进自己的不足之处。

垂直平分线性质教学反思4

  线段垂直平分线在几何作图、证明、计算中有着十分重要的作用。线段的垂直平分线的性质定理是推证线段相等的重要途经,它的逆定理常常用来推证一条直线是一条线段的的垂线或一点是一条线段的中点。

  在设计教案时,我结合教材内容,对如何导入新课,引出定理以及证明进行了探索。在导入新课这一环节上我先让学生做一条线段AB的垂直平分线MN,在MN上取一点P,让学生量出PA、PB的长度,引导学生观察、讨论每个人量得的这两个长度之间有什么关系:得到什么结论?学生回答:PA=PB。然后再让学生取一点试一试,这两个长度也相等,由此引导学生猜想到线段垂直平分线的性质定理。在这一过程中让学生主动积极的参与到教学中来,使学生通过作图、观察、量一量再得出结论。从而把知识的形成过程转化为学生亲自参与、发现、探索的过程。在教学时,引导学生分析性质定理的题设与结论,画图写出已知、求证,通过分析由学生得出证明性质定理的方法,这个过程既是探索过程也是调动学生动脑思考的过程,只有学生动脑思考了,才能真正理解线段垂直平分线的性质定理,以及证明方法。在此基础上再提出如果有两点到线段的两端点的距离相等,这样的点应在什么样的直线上?由条件得出这样的点在线段的垂直平分线上,从而引出性质定理的逆定理,由上述两个定理使学生再进一步知道线段的`垂直平分线可以看作是到线段两端点距离的所有点的集合。

  这样可以帮助学生认识理论来源于实践又服务于实践的道理,也能提高他们学习的积极性,加深对所学知识的理解。在讲解例题时引导学生用所学的线段垂直平分线的性质定理以及逆定理来证,避免用三角形全等来证。为了使学生当堂掌握两个定理的灵活运用,让学生完成两个例题,以达到巩固知识的目的。最后总结点O是三角形三边垂直平分线的交点,这个点到三个顶点的距离相等。

垂直平分线性质教学反思5

  线段垂直平分线在几何作图、证明、计算中有着十分重要的作用。线段的垂直平分线的性质定理是推证线段相等的重要途经,它的逆定理常常用来推证一条直线是一条线段的的垂线或一点是一条线段的'中点。

  在设计教案时,我结合教材内容,对如何导入新课,引出定理以及证明进行了探索。在导入新课这一环节上我先让学生做一条线段AB的垂直平分线MN,在MN上取一点P,让学生量出PA、PB的长度,引导学生观察、讨论每个人量得的这两个长度之间有什么关系:得到什么结论?

  学生回答:PA=PB。然后再让学生取一点试一试,这两个长度也相等,由此引导学生猜想到线段垂直平分线的性质定理。在这一过程中让学生主动积极的参与到教学中来,使学生通过作图、观察、量一量再得出结论。从而把知识的形成过程转化为学生亲自参与、发现、探索的过程。

  在教学时,引导学生分析性质定理的题设与结论,画图写出已知、求证,通过分析由学生得出证明性质定理的方法,这个过程既是探索过程也是调动学生动脑思考的过程,只有学生动脑思考了,才能真正理解线段垂直平分线的性质定理,以及证明方法。

  在此基础上再提出如果有两点到线段的两端点的距离相等,这样的点应在什么样的直线上?

  由条件得出这样的点在线段的垂直平分线上,从而引出性质定理的逆定理,由上述两个定理使学生再进一步知道线段的垂直平分线可以看作是到线段两端点距离的所有点的集合。这样可以帮助学生认识理论来源于实践又服务于实践的道理,也能提高他们学习的积极性,加深对所学知识的理解。

  在讲解例题时引导学生用所学的线段垂直平分线的性质定理以及逆定理来证,避免用三角形全等来证。为了使学生当堂掌握两个定理的灵活运用,让学生完成两个例题,以达到巩固知识的目的最后总结点O是三角形三边垂直平分线的交点,这个点到三个顶点的距离相等。

【垂直平分线性质教学反思】相关文章:

比的性质教学反思08-03

比的性质教学反思05-12

菱形性质教学反思09-22

小数的性质教学反思07-22

小数的性质教学反思(精选)09-09

《矩形的性质》教学反思06-30

《小数的性质》教学反思06-08

等式的性质教学反思06-20

菱形的性质教学反思08-21

等式的性质教学反思10-05