- 相关推荐
两角差的余弦公式教学反思
身为一名到岗不久的人民教师,我们的任务之一就是课堂教学,借助教学反思我们可以学习到很多讲课技巧,那么什么样的教学反思才是好的呢?下面是小编为大家收集的两角差的余弦公式教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。
两角差的余弦公式教学反思1
两角差的余弦公式是任意角三角函数知识的延伸,是后继内容两角和与差的正弦、余弦、正切,以及二倍角公式的知识基础。
之前我在新旧教材中都讲过这个内容,经过这次培训,我又对这一内容进行了设计,重新备课。就之前与之后的教学,我进行了反思。
一、反思教学理念:新课程理念的灵魂是三个教学目标的整合,关注学生的发展。知识可以通过传授获得,技能可以通过训练掌握。态度和情感价值观需要学生参与获得。这样,课堂教学中,要重视学生的参与、体验过程。但老师的指导作用也不可忽视,没有老师的引导,学生的行动、思维就很难达到一个较高的程度。教师通过创设激发学生学习欲望的数学情境,营造积极的活跃的学习氛围,才能使学生参与我们的教学中来。
二、反思教学过程:
(一)创设问题情境:之前旧教材的教学,我们只关注公式的应用,而轻视公式的由来,这样符合公式的发生发展过程。这次的教学设计我从如何解决一个实际问题出发,调动学生的思维与学习积极性,抓住学生的兴趣。
(二)两角差的'余弦公式的探究过程:之前旧教材的教学是用两点间的距离公式来推导两角和的余弦,再赋值得到两角差的余弦公式,这一过程中对学生的思维训练不是很多。而新教材采用了一种学生易于接受的推导方法,即先用数形结合的思想,借助于单位圆中的三角函数线,推出α,β,α-β均为锐角时公式成立。对于α,β为任意角时的情况,教材运用向量的知识进行了探究,使得公式的得出成为一个纯粹的代数运算过程,学生易于理解和掌握,同时也有利于提高学生运用向量解决相关问题的意识和能力。我采用了新教材的思路。
(三)两角差的余弦公式的简单应用。除了课本上的例题、习题,我补充了课堂练习、及课后作业,针对性较强。
两角差的余弦公式教学反思2
两角差的余弦公式是推导其它十个公式的基础,所以我想着重讲这一小节,本节课的重点和难点是两角差的余弦公式的推导,所以在备课阶段,我研究了教材和教师用书,并且还在网上下载了许多这节课的教学设计。同时我根据我们班学生对知识理解的快慢,把两角差余弦公式的几何证明方法舍去了,想只讲它的向量的方法,有两方面的考虑,第一是刚结束平面向量的学习,对数量积还有印象,第二是从另一个方面让学生去体会向量作为一种工具的应用,从而使学生能对数学有那么一点点兴趣。
在我准备好之后,我又问了其他的数学老师,她们也同意只讲向量的证明方法,另一个方法对学生连提都不提,另外我还问了一下如何引入这一节的.内容,并提了我的引入方法——将教材上的例题进行适当的改编,降低了难度,但是老师告诉我就直接点明主题就行了,加入引入的话会把学生绕晕的。我自己也想了想上次课讲数量积的时候对文科生用功的例子引入,结果可以想象,开头学生就觉得好难,等到讲数量积定义的时候学生完全听不进去了,那节课算是失败的。这一次我想了想采取了保守的策略——直接进入主题。
刚开始的时候效果还是不错的,通过让学生猜测15度《两角差的余弦公式》的教学反思——潘红亚的余弦值引起了学生的兴趣,很自然的进入了公式的推导,但是我没有想到会在写角的终边与单位圆交点坐标时遇到了困难,学生一点想不起来三角函数是如何定义的,再加上当时快下课了,我没有进一步引导,而只是按照我自己的进度讲完推导过程,最后学生迷茫的表情让我很有挫败感,我就带着学生一块记忆公式,并告诉他们只要会用公式做题就可以了,听不懂就算了。
这节课过后,我自己静下心来想了想,我犯了数学课的大忌,一味地讲公式,套解法是最快得分的捷径,但它也是扼杀思考的最有效的管道。数学的根基在于理解而非公式或解法。通过最近的讲课,我发现张硕老师对我们讲的有关数学教学的理论我都没用上,所以我想等到讲必修五的时候,我需要的是花大量的时间备课,适当应用一些新的教学理论,改变一下数学课堂,实习就是将自己学到的理论应用于实践。
【两角差的余弦公式教学反思】相关文章:
语文培优辅差教学总结07-10
小学培优辅差教学计划05-06
教学反思03-25
教学的反思12-08
高效教学教学反思03-31
古诗教学教学反思04-01
《泉水》教学反思05-31
燕子教学反思06-03
《约分》教学反思06-05