五年级方程教学反思(合集15篇)
身为一名人民老师,教学是我们的任务之一,对学到的教学新方法,我们可以记录在教学反思中,那么大家知道正规的教学反思怎么写吗?下面是小编为大家收集的五年级方程教学反思,仅供参考,希望能够帮助到大家。
五年级方程教学反思1
现在的小学数学教材十分注意将数学知识与生活实际紧密联系。内容的呈现注意体现儿童的已有经验和兴趣特点,提供丰富的与儿童生活背景有关的素材。如人教版小学数学五年级上册60页,关于警戒水位的问题。
本节课的教学目的是能让学生运用所学知识解决简单的实际问题,感受解简易方程与实际生活的密切联系,使学生初步掌握用列方程的方法解决实际问题的解题思路和方法;会把未知数的值代入已知条件看是否符合;在解方程解决问题的过程中培养学生初步的分析、综合、比较的能力;在解题过程中进一步培养初步的类推和迁移的能力及养成独立思考的良好习惯。本节课是学生初次利用列方程解决实际问题,对学生来说有一定的难度,上完后,感觉有不少问题存在。
教学例3时,我首先从例题上引导学生读题观察,理解题意,然后指导学生分析题中的数量关系。这时问题产生了,由于这里学生的认知局限性,学生对于什么是湖、大坝,甚至水库,堤坝都不知道是什么,给审题带来比较大的困难,又要重新向学生介绍有关湖泊、水库、堤坝等知识,最后为了让学生更好地理解,我还结合学生常见的鱼塘、塘堤等学生熟悉的情境进行说明,学生才恍然大悟,(教学反思 )由此可见,我们提供给学生的`情境必须是学生真正熟悉的生活情境,要结合当地学生的认识水平,这才是有效的情境。其次备课一定要深入,不仅要熟悉教材内容、教法、学法,还要深入分析学生已有的知识情况,这样才能备好一节课,要吸取教训。
在交流汇报时,学生说出了如下数量关系:
警戒水位+超出部分=今日水位
今日水位—警戒水位=超出部分
今日水位—超出部分=警戒水位
然后让学生依据数量关系列出相应的方程,这时学生发现例题与之前所学的方程有所不同,之前列方程时题目中未知数已经有了,直接看出x表示那个量,而例题中并没有x,从而引导学生了解到:要列方程必须把其中的未知量假设为x,从实际中让学生发现列方程解决问题时有“设……为x”的必要性,不至于出现在列方程时不写“解:设……”的情况。
但是,在列方程的时候却出现了这样的问题,因为教材只要求掌握“未知数不是减数和除数的方程”解法,在例题教学中,有的学生列出了这样的方程:14.4—x=0.64,从意义上来说,这样的方程肯定是没有问题的,但是应该怎样解呢?是否该向学生讲解方法?如果讲解方法,又该用什么方法来解?或是让学生把此方程改成教材要求的那样的方程?如果要改成教材要求的方程,那就是在向学生传达这样的信息:这样的列法是不被认可的,那么以后在学习“未知数是减数和除数的方程”时,学生的思维不就和现在冲突了吗?迷惑!
五年级方程教学反思2
纵观整节课教学,我认为已经基本把握教材的重难点。在讲解“方程的解”定义时,能从验算例子答案出发,让学生体会到“方程左右两边相等”的特征,从而能更好地理解“方程的解”的定义。
在讲授“解方程”定义概念时,我主要从教材思想出发,通过让学生说出采用各自不同的方法求解方程的解,让学生明白“解方程的各种方法,目的只有一个,那就是求出解,但不同的方法有自身不同的求解过程”着重让学生理解“求解过程”。
在这基础上,让学生讨论发现两个概念定义之间的区别。
在讲授“解方程:X+7=13”例题时,我安排一个成绩中等的学生上来解答(因为是新课,学生还没有接触过正确规范的书写格式,学生的求解方法和过程步骤,能代表整个班级的情况。况且学生的求解过程能起到反例的`作用,为下面比较教学——从对比中认识正确的求解过程做好铺垫)
板书正确书写格式后,让学生通过比较发现该如何正确规范地求解方程的解。
整节课教学存在几点不足:
1、学生课堂练习量少。这与定义的教学花费太多时间有关。
2、对学生新课之前的求解方程的解的方法缺少关注。解方程是可以有很多方法的,需要鼓励学生的多向发散思维。
3、教师课堂上虽然提到“对于一个X的值,它究竟是不是方程的解呢?为什么?”,但还是缺乏相关练习,因为这一内容对理解“方程的解”有极强的意义。
五年级方程教学反思3
一、教学内容:原通用教材六年制小学数学课本第十册第24页例7。
二、教学目的:使学生初步学会列方程解稍复杂的应用题,加深学生对数量关系和解题方法的理解,培养思维的灵活性。
三、教学过程:
(一)复习
1.说一说用方程解应用题的一般步骤。其中哪一步最重要?
2.解方程
45×8+10x=820 10x-45×8=100
8x+33x=820 (x+45)×8=820
(二)新课
师:前面我们已经学过用方程解应用题。解题时根据题意,先把题中数量间的相等关系找出来,再列方程。这一步非常重要。这节课我们继续学习用方程解稍复杂的应用题。[板书:列方程解稍复杂的应用题]
师:出示例7。
商店运来8筐苹果和10筐梨,一共重820千克。每筐苹果重45千克,每筐梨重多少千克?
师:边看题边想想。这道题的意思是什么?有哪些已知条件?要求的问题是什么?按照列方程解应用题的一般步骤,第一步你准备做哪件事?
生:题中告诉我们商店运来两种水果,一种是苹果,一种是梨。已知条件是运来8筐苹果和10筐梨,两种水果一共重820千克,每筐苹果重45千克。要求的问题是每筐梨重多少千克?我第一步准备设每筐梨重x千克。这样把问题变成了条件。
师:真能干。其他同学都会这样想吗?[板书:设每筐梨重x千克]当我们用x表示题里的未知数以后,就把问题转化成了条件。下面请同学们把“每筐梨重x千克”当作条件和题中原有的条件放在一起,找一找数量间的相等关系。大家可以议论议论。
师:谁能告诉大家,你根据题意,找出了哪两个数量间的相等关系?
生:我找的是8筐苹果的重量加上10筐梨的重量正好等于两种水果的总重量820千克。
师:还找出了其他相等关系吗?
生:我找的相等关系是从两种水果的总量里减去10筐梨的重量就刚好是8筐苹果的重量。
生:我想的是从两种水果的总重量820千克里减去8筐苹果的重量就等于10筐梨的重量了。
师:好了。刚才已有三位同学代表大家找出了题中数量间不同的相等关系。这些关系不仅找得正确,而且都注意了先用这个“每筐梨重x千克”[指板书]去和题里原有的条件合在一起,再找出数量间的相等关系。这样考虑问题的方法很好。可以怎样列方程?这样好不好,因为要想发言的同学太多。所以请一位同学代表大家的意见列出一个方程后,再请另一位同学简要地说出所列方程是不是正确,为什么?谁先说?
生:可以这样列方程45×8+10x=820。[板书]
师:有多少同学会列出这个[指板书]方程?[全班都会]太好了。这个方程对吗?为什么?可别把手放下去了。
生:这个方程是正确的。因为方程的左边这个含字母的式子表示两种水果的总重量,方程右边的820千克也是两种水果的总重量。所以,根据总重量等于总重量的关系列出的这个方程是正确的。
师:说得真不错。谁能再说说,为什么方程的左边这个含字母的式子是表示两种水果的总重量?[有意请一位差生作答]
生:因为45千克是每筐苹果的重量,8是苹果的筐数。[教师用教鞭指45×8]45×8是表示苹果的总重量。x表示每筐梨的重量,10表示梨的筐数。10x表示梨的总重量。
45×8+10x这个含字母的式子表示苹果和梨一共的重量。
师:真能干,请坐。请全班同学在作业本上用方程解答这道题。解答后请翻开课本第24页和书上的解答对照一下,看看自己的解答与书上的解答是不是相同。[巡视并有意请一位差生在黑板上解答]
师:怎么,都解答完了。检查过了吗?和××解答一样的有哪些同学?[学生举手示意]谁来说说你是如何检查的?
生:把方程的解代入原方程左边,360+460等于820,方程的右边也等于820,所以x=46是原方程的解。
师:检查的过程虽然不要求写出来,但我们要养成检查的习惯,检查后再写出答案。
师:还有不同意见吗?[因有学生举手]
生:我列的方程和书上的不一样。我根据苹果的重量等于苹果的重量的相等关系列的。820-10x=45×8,方程的解还是46。[板书这个方程]
师:非常好。能根据不同的相等关系列出不同的方程,但方程的解却是相同的。很会动脑筋。还可以怎样列方程?
生:我列的方程是820-45×8=10x。相等关系是梨的重量同梨的重量相等。
师:这个方程对吗?
生:我觉得不完全对。解方程不好写。
生:这个方程是对的。因为相等关系找对了。
师:[举手同学多还想发表意见]这样,老师说说看法。应该说这个方程是正确的.。因为它是根据梨的重量等于梨的重量的相等关系列出的方程。只不过我们习惯的写法是把含字母的式子写在等式的左边。如果列出了这样的方程只需要把等式左右两边调换一下,就便于我们解方程了。
师:[小结]这节课我们学了列方程解稍复杂的应用题。下面让我们一起根据大家在解题中的思考过程,再来总结一下解题的思路。想想看,在解题过程中你自己先怎样,再怎样?然后怎样?最后怎样?谁能结合自己刚才解题中的思考过程一步接一步地说出来。
生:第一步是读题后把问题转化成条件;第二步是把转化来的条件拿来和题中原有的条件放在一起;第三步找数量和数量间的相等关系;第四步是根据相等关系列方程;第五步是解方程;最后一步是检查和写出答案。
师:谁能把××同学总结的思路再说一遍?[有意请中差生回答]
生:第一步……[教师边引导××说边板书如下]
师:这就是今天我们学习的列方程解稍复杂应用题的解题思路,也就是我们的思考过程。另外,同学们在学习中肯动脑筋,会动脑筋,同一道题列出了不同的几个方程。它们的解都相同。这是因为数量间的相等关系不只一个。根据不同的相等关系就可以列出不同的方程来。但要注意,方程是不是列正确了不是看方程的“样子”,而是要看相等关系找对没有。只要按照这样的思路[指板书]正确地去列方程都可以。
(三)巩固练习
师:请拿出作业本。我们作几道练习题。只设未知数,列方程,不解方程。
第一题是把例7中的“一共重820千克”改成“苹果比梨少100千克”[擦去“一共重820千克”,再写上“苹果比梨少100千克”]列出方程。
师:谁来告诉大家,你是怎样设未知数和列方程的?[有意请中差生]
生:设每筐梨重x千克,方程是10x-45×8=100。
师:你是根据哪两个数量的相等关系列出这个方程的?能说出来吗?
生:苹果比梨少的重量等于苹果比梨少的重量。
师:正确吗?
生[齐]:正确。
师:还可以怎样列方程?先说相等关系,再说方程。
生:用苹果的重量加上苹果比梨少的重量就等于梨的重量。
10x=45×8+100
师:有多少同学根据×××找出的相等关系,列出的方程跟他相同?[学生举手]
师:这两位同学的想法都不错,列出的方程也正确。请全班同学都注意,列方程解应用题时,只要根据你自己能理解的又比较容易找到的数量间的相等关系列出方程就可以了。
下面三道题请把方程写在作业本上。
1.商店运来苹果和梨各8筐,一共重724千克。每筐梨重46千克,每筐苹果重多少千克?
2.学校买回4个排球和5个篮球,共用476元。每个篮球56元,每个排球多少元?
3.学校买篮球比买排球多花84元。买回篮球5个,每个56元,买回的排球每个49元。学校买回多少个排球?
[教师行间巡视,进行个别指导]
五年级方程教学反思4
阿尔法趣味数学网今天带来的是五年级数学《列方程解应用题》教学反思,附:列方程解应用题的一般步骤和关键是什么。
列方程解应用题为学生解答应用题开辟了一个新的途径,开拓了学生的思路,提高了学生解答应用题的能力。因此,在小学阶段,学生必须掌握好列方程解应用题的知识,为今后进一步学习数学打下良好的基础。下面谈谈我在教学这部分知识时的一点做法:
一、由旧引新,培养学生有条理、有根据地进行分析思考的能力
列方程解应用题是建立在用算术方法解应用题的基础上得,由算术方法解题到列方程解题是一个过渡。为了使学生在初学列方程解应用题是不受算术方法的干扰,教学时,我便在数量关系的训练上帮助学生找渗透点,使教学活动循序渐进的展开学习,使学生对要学的知识感到新鲜而不陌生,以保持高昂的学习热情。一般做法是用与例题数量关系相似的基础题铺垫,引导学生分析数量关系,掌握解题思路,尤其注意解题步骤,注意搭桥铺路,分析难度,在此基础上在教学例题。
比如:“商店原来有一些饺子粉,每袋5千克,卖出7袋以后,还剩40千克,这个商店原来有多少千克饺子粉?”
我在教学时设计了以下两道铺垫题:
题1:商店原来有75千克饺子粉,卖出35千克,还剩多少千克饺子粉?
题2:商店原来有75千克饺子粉,卖出5袋,每袋7千克,还剩多少千克饺子粉?
引导学生弄清题意,给出数量关系式:
原有的重量-卖出的重量=剩下的重量
原有的重量-每袋重量×卖出的袋数=剩下的重量
出示这道题的目的是让学生有旧入新、由浅入深,把铺垫题与例题相比较,找出它们的联系点与区别。这样,弄清了铺垫题与数量关系,再教学例1,学生旧容易接受了。
二、运用线段图进行教学,培养学生的分析、观察能力
学生初步的逻辑思维能力的发展,需要有一个长期的培养过程,要有意识地结合教学内容进行。应用题的分析解答,大都遵循审题→分析→解答这样的顺序,而主要是引导学生分析数量关系。因此,运用线段图分析比较数量关系,能够变抽象为具体,变繁为简,是数量关系明确,为学生理解题意加起桥梁。这样不仅可以激发学生的学习兴趣,而且便于培养学生分析、解决问题的能力以及良好的数学思维能力,从而收到事半功倍的'效果。
总之,在列方程解应用题的教学中,我们要借助各种教学手段,通过多种途径帮助学生建立概念、理清算理。最终,学生对这部分知识掌握的还可以,都能根据数量关系列方程解答应用题。
阿尔法趣味数学小课堂:列方程解应用题的一般步骤和关键是什么
列方程解应用题的一般步骤:
根据题目要求选择合适的未知数,一般为问题所要求的量,不过要具体问题具体分析.写出:设……为x,……为y,……
将未知数当做已知量,根据题目的意思列出等式.即,列出方程式3.求解方程中的未知数。
列议程解应用题的关键是什么:找等量关系。
五年级方程教学反思5
教材分析
本节是学生首次学习用列方程的方法解决问题,所以字母表示数是学习本章节元知识的基础。按照教材的编写意图,要利用天平让学生亲自参与操作和实验,借助天平平衡的道理建立等式、方程的概念,以加深理解。因此本信息窗安排了三个内容,第一个首先利用天平平衡原理理解等式的意义。第二和第三个红点部分是学习方程的意义。
1、这节课要求学生进一步认识并掌握用字母表示数,初步了解方程的意义,为以后学习运用准备。
2、本节课是在学生已经初步认识了字母表示数的基础上进行教学的。
3、学习本节课是今后继续学习代数知识的基础,同时对发展学生的多向思维具有举足轻重的作用。
,
学情分析
本节教学方程的意义,是学生第一次学习有关方程的知识。根据学生的年龄心理特点及生活经验,鼓励学生多观察、多讨论、多探究、多协作、多操作,采用了观察法、讨论法、探索协作学习法和操作法,使学生成为学习的主人。经过探索,掌握方程的特点和意义。
教学目标
1.能利用天平,通过动手操作理解等式的`意义。
2.结合具体实例和情景,初步理解方程的意义,会用方程表
达简单的等量关系。
3.培养保护动物的意识,感受数学与生活的密切联系,提高
学习数学的兴趣。
教学重点和难点
重点:方程意义的理解 难点:建立等式、方程的概念
教学过程
五年级方程教学反思6
今天学习了《列方程解决实际问题》,学生经历列方程解决一步计算的实际问题的学习过程,在练习中学生对列方程解决实际问题的一般步骤和方法掌握不太好。
本节课我重视学生对数量关系的理解和列方程与数量关系的对应的方程。如:例7的数量关系:小军的成绩-小刚的成绩=0.06米,对应的.方程是x-1.39=0.06,如果数量关系:小军的成绩-0.06米=小刚的成绩,对应的方程是x-0.06=1.39。
本节课学生设未知数x的后面单位名称会丢掉。在本节课教学中使用的数量关系,实际上就是以前的“…比…多…”和“…比…少…”应用题的数量关系,数量关系:大数-小数=差,大数-差=小数,差+小数=大数。
五年级方程教学反思7
人教版五年级上册《解简易方程》这个单元中,教材是通过等式的基本性质来解方程,这个方法虽然说使得小学的知识与初中的知识更加的接轨,让方程的解法更加的简单。从教材的编排上,整体难度下降,对学生以后的发展是有利的。但是教材中故意避开了减数和除数为未知数的方程,如:a-x=b或a÷x=b,要求学生根据实际问题的数量关系,列成如x+b=a或bx=a的方程。这样的处理方法,有时也会无法避免地直接和方程思想发生矛盾。例如“爸爸比小明大28岁,小明Х岁,爸爸40岁。”很多学生列出了这样的方程:40-Х=28,方程列的是没有任何问题的,但是应该怎么解呢?允不允许学生用四则运算各部分的关系来解方程?是否该向学生讲解方法?还是让学生把此方程改成教材要求的那样的方程?如果要改成教材要求的方程,那就是在向学生传达这样的思想:这样的列法是不被认可的,那么以后在学习“未知数是减数和除数的方程”时,学生的思维不就又和现在冲突了吗?现在学习的节方程中,学生很容易看见加法就减,看见减法就加,看见乘法就除,看见除法就乘,如把30÷Ⅹ=15的解法教给学生,能熟练掌握并运用的学生很少,对大部分学生来说越教越是糊涂,把本来刚建构的解方程方法打破了。如果不安排,那么每次在出现的时故意回避吗?
在教学列方程解加减乘除解决问题第一课时,我是这样处理的。先出示做一做的题目,这题更接近学生的实际,学生也能更好理解数量关系。小明今年身高152厘米,比去年长高了8厘米。小明去年身高多少?先让学生读题理解题目中有哪几个量?引导学生进行概括,去年的身高、今年的身高、相差数。追问:这三个量之间有怎样的相等关系呢?
去年的身高+长高的8cm=今年的身高
今年的'身高-去年的身高=长高的8cm
今年的身高-长高的8cm=去年的身高
你能根据这三个数量关系列出方程吗?学生尝试列方程。几乎全班学生都是正确的。
X+8=152 152-x=8 152-8=x
追问学生你对哪个方程有想法?学生一致认为对第三个方程有想法?生1:这个根本没有必要写x,因为直接可以计算了。生2:x不写,就是一个算式,直接可以算了。我肯定到:列算式解决实际问题时,未知数始终作为一个“解决的目标”不参加列式运算,只能用已知数和运算符号组成算式,所以这样的x就没有必要。接着让学生解这两个方程X+8=152 、152-x=8方程。学生发现152-x=8解出来的解是不正确的。告诉学生减数为未知数的方程我们小学阶段不作要求,所以你们就无法解答了。接着,我再引导学生观察这三个数量关系,他们之间有联系吗?其实减法是加法的逆运算,是有加法转变过来。因此,我们在思考数量关系时,只要思考加法的数量关系,这是顺向思维,解题思路更加直截了当,降低了思考的难度。接着只要把未知数以一个字母(如x)为代表和已知数一起参加列式运算x+b=a,体会列方程解决问题的优越性。这就是我们今天学习的一种新的解决问题的方法——列方程解决问题。
接着用同样的教学方法探究bx=a的解决问题。
我这样的教学不知道是否合理?其实小学生在学习加减法、乘除法时,早就对四则运算之间的关系有所感知,并积累了比较丰富的感性经验。要不要运用等式的性质对学生再加以概括呢?
五年级方程教学反思8
《认识方程》是学生学习代数初步知识的开始。教材运用丰富的问题情境,引导学生用语言描述具体情境中的等量关系,并用含有未知数的等式表示,在此基础上引导学生找出这些含有未知数的等式的共同特征,了解方程的含义。
《认识方程》是在学生学会用字母表示数的.基础上进行教学的。通过本课的教学,要使学生了解方程的含义,会用方程表示简单的数量关系。本课的教学在学生日后学习等式的性质、解方程及运用方程解决简单的实际问题的过程中起着承上启下的作用。它是学生学习用方程解决问题的起始课,在本单元中具有重要地位。
介于以上认识我对本课进行了一些设计,通过教学感觉比较成功的有以下几点做法。
一、“巩固复习,铺垫新知”这一部分通过填空和分类,让学生了解“等式、不等式、代数式”等概念,为后面区分方程和等式做一个铺垫。
1、填空:3.6+2.1○7.7-21.6×5○5×1.638.4×0.2○38.45.9÷0.1○5.9
t与8的和:b除42的商:
2、进行分类,出示名称(等式、不等式、代数式)
二、在认识方程之前就让学生辨认方程,了解学生对方程的认识程度,也激发学生学习方程的欲望。(你们能判断哪些是方程吗?
① 6+x=14② 3×42=126③ 60 +23 ﹥ 70④ 8+x
学生有争议没有关系,带着疑问学习新知。师:“到底谁说的对呢?让我们一起去找答案吧!”)
三、列方程最困难的就是找出等量关系式,为了让学生能较好的掌握等量关系,在教学三个例题中我都按照一个步骤去引导学生解决这类问题。(1)先找数量之间的等量关系。(2)用字母表示未知数。(3)列出方程
四、注意了细节的引导。例如未知数不要单独放一边;未知数最好放在左边,便于计算;等式与方程的关系等等。这些内容在新课中一一解决,学生掌握较好。
当然一节课总有不足的地方,这节课也不例外。比如方程的概念的出示就比较死板,其实当学生说到哪里我就应该顺势逐步完善概念,不一定非要在预定的时候出现,应该更灵活一些。
五年级方程教学反思9
本节课的教学重点和难点是:
理解“方程的解”、“解方程”两个概念;会运用天平平衡的道理解简单的方程。在教学环节的设计和安排上,尽量为突破教学重点和难点,因此我进行了大胆的尝试,在讲解方程的解时,新课程解方程教学与以往的最大不同就是,不是利用加减乘除各部分间的关系来解,而是利用天平保持平衡的原理,也就是我们常说的等式的基本性质解方程。教学中我先利用演示了天平两端同时加上或减去同样的重量,同时扩大或缩小相同倍数,天平任然保持平衡,目的是让学生直观感受天平保持平衡原理,为学生迁移类推到方程中打基础。然后出示例1,让学生列出方程x+3=9,用演示x+3个方块=9个方块,提问:“如果要称出x有多少块,改怎么办?”,引导学生思考,只要将天平两端同时减去3个方块,天平仍平衡,得到一个x相当于6个方块,从而得到x=6。你能把称的过程用算式表示出来吗?大部分学生快速的写出了我想要的答案:x+3-3=9-3,于是我问:为什么方程两边要同时减去3,而不减去其它数呢?
学生沉默,终于有两双小手举起来了,“为了得到一个x得多少”,我又强调了一遍,我们的目标是求一个x的多少,所以要把多余的3减去。在此基础上我引导学生总结天平保持平衡的道理,得到等式的基本性质:方程的'两边同时加上或减去相同的数,除以或乘上同一个不为0的数,方程两边仍然相等。 另外我还要求学生掌握加、减、乘、除法各部分之间的关系,然后利用:一个加数=和-另一个加数;被减数=减数+差等关系来求出方程中的未知数。在做练习时我发现大部分的学生在解方程的时候,还是运用了加、减法各部分间的关系来求出方程中的未知数,只有个别学生懂得运用等式的性质来求出方程中的未知数。在讲授“解方程”定义概念时,我主要从教材思想出发,通过让学生说出采用各自不同的方法求解方程的过程叫解方程,使方程左右两边相等的未知数的值,叫做方程的解。
五年级方程教学反思10
本课是以天平为形象支撑,结合了具体的问题情境,用式子表示天平两边物体的质量关系,让学生通过观察、分析、写出式子,再通过分类,比较式子的异同,在讨论和交流活动中,由具体到抽象,逐步感受,理解方程的含义。概念的构建过程,并不是由教师机械地传授甚至告诉学生,而是用数学符号提炼现实生活中特定关系的过程。
由于认识水平的局限性,小学生往往把运算中的等号看作是做什么的标志。如在算式3 + 2的后面写上等号,往往被理解是执行加法运算的标志。他们通常把等号解释为答案是。而实际上,应把等号看作是相等和平衡的符号,这个符号表示一种关系,即等号两边的'数量是相等的,也就是在3 + 2与5之间建立了相等的关系。本课设计,首先着力帮助学生构建对相等关系和等式的理解,而不是蜻蜓点水般一带而过,从而为后续认识方程,体会列方程是表示现实情境中的等量关系,方程是刻画现实世界的模型,建立良好的基础。
方程,对小学生来说,不仅是形式上的认识,也是感受在解决实际问题过程中建立模型的过程。全课教学过程,教师在出示图的基础上,都是引导学生先用语言描述,即把日常语言抽象成数学语言,进而转换成符号语言。如试一试第二幅图,学生很容易列出形如20 - 12 = x的式子,这样的式子反映的是学生仍然停留于算术思路。让学生先用语言描述图意,从直观的图中抽象出文字语言表述的数量间的相等关系,然后让学生进一步用数学式子表示。在多次经历这样的活动过程中,学生感受到方程与实际问题的联系,领会数学建模的思想和基本过程,顺利实现从算术思维向代数思维的过渡。
五年级方程教学反思11
小学五年级第四单元教材的设计打破了传统的教学方法。在以前人教版教材中,学习解方程之前首先要求学生掌握加、减、乘、除法各部分之间的关系,然后利用:一个加数=和-另一个加数;被减数=减数+差等关系来求出方程中的未知数。而新教材则是借用天平游戏使学生首先感悟“等式”,知道“等式两边都加上或减去同一个数,等式仍然成立”这个规律,这样才能从真正意义上很好地揭示方程的意义,进而学会解方程,还能使之与中学的移项解方程建立起联系。
在教学前,由于我个人比较偏好于传统的教学方法,总觉得用等式的性质解方程比较麻烦。为了转变自己的教学思想,更新教学观念,我深入了解新教材的涵意——方程是一个一个等式,是一个数学模型,是抽象的,而天平是一个具体的东西,利用天平这样的事物原形来揭示等式的性质,把抽象的解方程的过程用形象化的方式表现出来,使学生更好的理解解方程的过程是一个等式的恒等变形。并能站在“学生是学习的主人”和“教师是学习的组织者、引导者与合作者”的这一角度上,为学生创设学习此课的情境,通过直观演示,充分给学生提供小组交流的机会。在教学的整个过程中,重点突出了“等式”与“等式两边都加上或减去同一个数,等式仍然成立”这个规律,不断对孩子们进行潜移默化地渗透,促使绝大部分的学生都能灵活地运用此规律来解方程。从而,我惊喜地发现孩子们的`学习活动是那么的有滋有味,进而使我很顺利地就完成了本课的教学任务。 通过近段时间的学习,发现学生对这种方法掌握的很好,而且很乐意用等式的性质来解方程,但同时让我感到了一些困惑:
1、教材的编排上,整体难度下降,有意避开了,形如:45—X=23 56÷X=8等类型的题目。把用等式解决的方法单一化了。在实际教学中,如果用等式性质来解就比较麻烦。很显然这种方法存在着目前的局限性。对于好的学生来说,我们会让他们尝试接受——解答X在后面这类方程的解答方法,就是等号二边同时加上X,再左右换位置,再二边减一个数,真有点麻烦了。而且有的学生还很难掌握这样方法。但是用减法和除法各部分之间的关系解答就比较简单。
2、 内容看似少实际教得多。难度下降后,看起来教师要教的内容变得少了,可以实际上反而是多了。教师要给他们补充X前面是除号或减号的方程的解法。
总之,要使孩子们爱学、乐学,教师就必须更新教学观念,充分理解教材,并要懂得为教学去创设合理情境,灵活处理教材中的问题,鼓励学生算法的多样化,真正体现课改精神——“人人学有价值的数学,人人都能获得必须的数学;不同的人在数学上得到不同的发展。
五年级方程教学反思12
本课教学的难点是如何正确设未知数,找出等量关系列方程解决问题。其实,这不仅是学生,就包括我们成人在内,在遇到列方程解应用题时都要认真考虑如何正确设未知数,找出等量关系列方程解决问题。所以在这一环节,我有必要帮助学生一步步突破这种用方程解答含两个未知数的.和倍(差倍)应用题的难点。而在这一环节,我觉得我做得非常到位,我设计了一个“这道题中应该把谁设为未知数x,试着列出数量关系式并列出方程”这样一个问题,在合作中解决重难点,不足的地方老师补充。因为他们知道怎样正确设未知数,就能找出等量关系列方程解决问题了。
本课教学的重点是让学生学会用方程解答含有两个未知数的和倍(差倍)实际问题。可以说他涵盖了此种类型应用题的全部正确过程。因为难点突破的比较实在可行,学生印象扎实,学生当然消化吸收得好。我想:就是学困生虽然一时理解不上来,但他课后一定会慢慢回忆起老师一步步引导的过程,从而解决问题。
五年级方程教学反思13
长期以来,在小学教学解简易方程,是依据加减运算的关系或乘除运算之间的关系,这实际上是用算术的思路求未知数。这种方法到了中学又要另起炉灶,重新开始。根据新课标的要求,人教版教材从小学起就引入等式的基本性质,并以此为基础导出解方程的方法,使学生摆脱算术思维方法中的局限性,有利于加强中小学的知识衔接。
猜想是学生学习数学的一种重要方式,通过让学生综合已有的知识和经验的基础上经历等式的变化过程,不仅让学生体会到数学来源于生活,还为猜想等式的性质奠定了良好的基础。学生一旦作出了猜想,就会迫不及待的`想去验证自己的猜想是否正确,从而主动地去探索新知。
任何猜想都必须经过验证,才能确定是否正确,而验证的过程也正是学生主动学习探索数学知识的过程。学生通过自己动手用天平称一称,验证自己的猜想,以一种自主探究的方式进一步认识了等式的性质,为后面学习解方程奠定了良好的基础。“举出生活中的例子”体现了数学来源于生活,学到的数学知识也要应用到生活当中去的理念,让学生体会到数学就在自己的身边。这样的设计不但极大地激发了学生的学习兴趣,还有利于培养学生的自主探究能力和创新能力。
学生在合作操作中,已经对解方程有了一定的基础和认识,能够大概地说出解方程的过程和依据,而又一次让同学之间同桌说一说后再全班交流体现了本节课的学习重点“理解并利用等式的性质解方程”,“为什么要减去3”突破本节课的难点。在这个环节中教师还有针对性地指导了书写的规范性和检验的过程。师生之间的共同探讨,显示了一种平等的师生关系。
练习中学生加深了对“方程的解”的认识,抓住了利用等式的性质这一依据去解方程。不同层次的练习照顾了学生之间学习水平的差异,3X=8.4对等式的性质进行了拓展,有利于发散学生的思维。最后交流学习的收获促进了学生形成积极的学习心理。
五年级方程教学反思14
《方程的意义》这节课与学生的生活有密切联系,通过本节课的学习,要使学生经历从实际问题中总结概括出数学概念的过程。让学生初步了解方程的意义,理解方程的概念,感受方程思想。使学生经历从生活情境到方程概念的建立过程,培养学生观察、猜想、验证、分类、抽象、概括、应用等能力。通过自主探究,合作交流等数学活动,激发学生的兴趣,所以我在教学设计的过程中十分重视学生原有的知识基础,用直观手法向抽象过渡,用递进形式层层推进,让学生经历一个知识形成的过程,并尽可能让他们用语言表达描述出自己对学习过程中的理解,最后形成新的知识脉络。下面就结合这节课,谈谈我在教学中的做法和看法。
一、复习导入,激趣揭题
该环节主要复习与新知识有间接联系的旧知识,为学习新知识铺垫搭桥,以旧引新,方程是表达实际问题数量关系的一种数学模型,是在学生熟悉了常见的数量关系,能够用字母表示数的基础上教学的,因此开课伊始我结合与学生有关的一些生活现象出示了一组题,要求学生用含有字母的式子表示出来。这些题的出现即能让学生复习巩固以前所学的知识也能让学生体会到我们生活中有很多现象都能用式子表示出来,激起学生的学习兴趣,引出这节课的学习内容,这样的开课很实际,很干脆,也很有用。
二、实践操作,建立方程模型
1.用天平创设情境直观形象,有助学生理解式子的意思
等式是一个数学概念。如果离开现实背景出现都是已知数组成的.等式,虽然可以通过计算体会相等,但枯躁乏味,学生不会感兴趣。如果离开现实情境出现含有未知数的等式,学生很难体会等式的具体含义。天平是计量物体质量的工具,但它也可以通过平衡或者不平衡判断出两个物体的质量是否相等,天平图创设情境,利用鲜明的直观形象写出表示相等的式子和表示不相等的式子,可以帮助学生理解式子的意思,也充分利用了教材的主题图。
2、自主操作,提高能力,激发兴趣
在探究方程的意义时我特意给学生提供操作天平平衡的不同材料,让学生分组实践,通过操作、观察天平的状态得到许多不同的式子,由于材料不同,每个组所得的式子也不同,有的全是已知数的式子,有的是含有未知数的式子,多种多样的式子激起学生的探究欲望激发学生观察兴趣。
三、实际运用,升华提高
在练习设计中由易到难,由浅入深,使学生的思维不断发展,使学生对于方程意义的理解更为深刻,特别使让学生自由创作方程这一练习题,既让学生应用了知识又培养了学生的创新思维。
本课时教学设计,改变了传统学习方式,利用课本的静态资源通过现代化教学手段,把数学情景动态化,大大激发了学生的学习兴趣,充分体现了以学生为主,让学生独立思考,不断归纳,把学生从被动地接受知识转为自己探究,为学生提供了自主探究,合作交流的空间。在学习中体会到了学习数学的乐趣,在获取知识的同时,情感态度,能力等方面都得到发展。当然这节课还存在一些问题,比如对等式与方程的关系突出得不够,读学生“说”的训练不够,应该给学生更多的表述的机会。
五年级方程教学反思15
方程的意义这部分内容是学生初步接触了一点代数知识之后进行教学的,重点是“方程的意义”。设计的意图是想通过观察天平“平衡现象→不平衡到平衡→不确定现象”三个直观活动,抽象出相关的数学式子,再通过观察这些数学式子的特征,抽象出方程的概念,即由“式子→等式→方程”的抽象过程,然后通过必要的练习巩固加深对方程概念的理解和应用。因此本课设计了活动探索、自主分类、抽象概括、灵活运用4个环节,让学生通过观察、分析、抽象、概括,建立起方程的概念,明确方程与等式的关系。
根据儿童思维发展的递进性,设计了三个层次的活动,一是通过学生观察,抽象出相应的数学式子,建立起“平衡—相等、不平衡—不相等”的概念;二是通过自主探索,合作交流的学习方式,使不同能力的`学生都得到有效发展;三是引导学生对“等式”观察,将等式分为“含有未知数”和“不含未知数”两类,然后抽象出方程的概念。最后通过判断与独立创作方程两个学生活动,进一步理解了方程的意义,明确方程与等式的关系。教学实施中的不足之处:教师在教学中用语不够准确精练,对学生的数学语言表达能力指导欠缺,对学生的发言教师倾听程度不够,未能很好把握课堂教学中生成的课堂教学资源。
【五年级方程教学反思】相关文章:
方程教学反思03-28
五年级方程教学反思04-07
《解方程》教学反思03-28
《解方程》的教学反思04-07
直线与方程教学反思03-25
直线的方程教学反思03-27
简易方程教学反思03-27
《方程的意义》教学反思03-09
《方程意义》教学反思03-16
等式与方程教学反思04-18