乐文网>教学资源>教学反思>近似数教学反思

近似数教学反思

时间:2024-09-15 00:07:16 教学反思 我要投稿

近似数教学反思14篇

  身为一名到岗不久的老师,课堂教学是重要的任务之一,借助教学反思可以快速提升我们的教学能力,那么教学反思应该怎么写才合适呢?下面是小编为大家整理的近似数教学反思,仅供参考,大家一起来看看吧。

近似数教学反思14篇

  近似数教学反思 篇1

  本课教学采用情境串教学,以连环画的形式,使学生始终能够富有兴趣地参与教学活动之中。首先,本节课,将教学活动置于手拉手活动情境中,激趣引入农村的小朋友也非常好客,今天他们邀请城市的小朋友去参观,让我们一起到农村去看一看,好吗?在教学设计时遵循了这一理念,数学来源于生活,生活中的数学能让学生充分体会学习数学的意义和价值。

  教学活动中,让学生借助已有的数的组成和数位等知识,充分发挥学生的数感,引导学生充分合作交流。活动一:借助哪种果树多?引入对万以内不同数位的数,大小比较方法的探索。活动二:通过鹌鹑和鸽子谁多?你能介绍一下比较的方法和结果吗?让学生通过交流,体会解决问题策略的多样性,得出正确估计近似数的方法,掌握相同数位的.数之间比较大小的方法。

  其次,新《数学课程标准》指出:教师应向学生提供充分从事数学活动的机会,帮助他们在自主探究和合作交流的过程中获得数学知识,数学思想和方法。本节课较好地落实了这一理念,在活动三中:学生自主解决提出的其它有关比较的问题。如动物彩蛋和脸谱彩蛋哪个多等等。教师加以升华,进一步总结出万以内数比较大小的一般方法及找近似数的方法,引导学生自我评价,总结本节课所学的知识。

  近似数教学反思 篇2

  教学目标:

  1.结合豆豆测量身高这一现实情境使学生知道求一个小数的近似数在现实生活中的广泛应用,加深对小数的认识,培养学生的数感。

  2.能够根据要求会用:“四舍五入”法保留一定的小数位数,求出一个小数的近似数。

  教学重点:求小数的近似数的方法。

  教学难点:理解表示近似数时,小数末尾的0不能去掉。

  根据学习目标,结合课本内容,我制定了两个学习任务:

  1.探究求小数近似数的方法。

  2.比较理解近似数1和1.0。

  下面就整个教学过程的设计进行简单的分析:

  在激情导课环节,我先创设菜场买菜付钱情境,又结合课本的主题图,创设了邻居家的孩子“小豆豆”测身高的生活情境,自然的引入新课,使学生看到小数在生活中的'广泛应用。然后回忆整数的近似数方法,为学习新知做铺垫。

  在民主导学环节,任务一是让学生探究求小数近似数的方法。学生先自学,然后在小组内交流学懂的知识。最后运用学会的方法解决问题。进行展示时,主要依靠小组,组间交流互动。让学生总结出求近似数的方法。当学生还有表达不完整的时候,我再进行补充小结。在这里,我主要强调“精确”到某一位的另一种表达方式,即省略这一位后面的尾数。以帮助学生进一步理解求近似数的方法。关于近似数末尾的0为什么不能去掉,为了帮助学生理解这个问题,突破本节课的难点,我设计了任务二比较理解。

  . ≈1 ( )

  . ≈1.0( )

  1.思考有几种填法。把能填的数写在后面的括号里。

  2.小组同学说一说近似数1和1.0的不同之处。

  在学生展示交流完毕,我又出示了数轴图,目的是让学生直观的感受到近似数1和1.0意义的不同,精确程度的不同,1.0比1更精确。由此得出“表示近似数时,小数末尾的0不能去掉”。

  在检测导结环节我采用了课堂检测单,检测题围绕学习目标,检测学生对当堂知识的理解。第二题是结合生活实际提出,目的是再次让学生感受到生活中的数学,培养学生做一个生活的有心人,知识的发现者。

  在进行小组交流时,由于一开始没有调动起学生的积极性,课堂显得有点沉闷。可是在后面的学习中,学生逐渐的打开了思路,积极主动的参与到学习中来。不但自主探索到求近似数的方法,而且理解了为什么表示近似数时末尾的0不能去掉。可以说两个任务的呈现都比较合理,有可操作性,引导学生完成学习目标的方向非常明确。任务二的呈现稍显难度,但这也是这堂课的亮点。采用数形结合的方法,为学生直观的理解知识搭建了合理的平台。

  在以后的教学中,我觉得应该在钻研教材方面下大功夫,只有这样才能更好的用教材,呈现合理的学习任务。对学生学习方法的培养也是课堂教学的重要任务,我们一定要努力处处为学生着想,时时为学生服务,课课让学生精彩!

  近似数教学反思 篇3

  教材是用一位小朋友的身高的近似数来引入新课的:豆豆的身高是0.984米,小芳说约是0.98米,小明说约1米,通过说法的不同引出争论。我先和孩子们一起复习了求整数近似数的方法——四舍五入法,为新课做好准备和铺垫。然后通过类比的方法,以生活中常遇到的购买商品这项事情为例,引出语句“省略十分位、百分位、千分位……后面的尾数”,接着让学生试着说出这些语句还可以怎么说,及时小结还可以说成“精确到什么位”、“保留几位小数”,最后让学生们自己看书上的`例题,并做相应的习题。

  整节课下来,我觉得比较成功的地方有以下几点:第一,引导学生理解保留几位小数的含义:保留一位小数就是精确到十位,省略十分位后面的尾数;保留两位小数就是精确到百分位,省略百分位后面的尾数……我是尽量让学生自己说出这些语句的,小结后还让学生熟读,再闭上眼背诵。第二,让学生自主探索“保留整数”的含义。在让学生独立阅读课本以后,我让学生试着把豆豆的身高保留二位小数、保留一位小数、保留整数,这样逐步过渡,让学生找出规律。第三,让学生知道为什么要学习求小数的近似数。这也是我比较看重的,要区别“填鸭式”教学,这个环节最有说服力。

  不足之处也很明显:虽然课堂上孩子们踊跃发言,但是,这样的课堂进程对我这样的课堂驾驭能力差的老师是个负担,使练习量大打折扣,所以作业情况有点两极分化,还好,作业完成得不太好的孩子都是日常生活中听说反应比较缓慢的,约占全班人数的十分之一。他们出现较多的问题是不能准确写成符合要求的小数:比如4.985要求保留两位小数,错写成一位小数。还有,学生对小数不同数位的对应位置还不够熟练,可能因为前几节课刚讲授完“统一单位”,没有给他们好好进行小复习。小数这个单元内容比较多,更需要及时复习。通过教参,我还发觉了遗漏了一个环节:“保留不同位数的小数求得的近似数是否相同?如果不同,哪个近似数会更精确一些?”

  近似数教学反思 篇4

  《新课程标准》指出:数学教学是数学活动,教师要紧密联系学生的生活环境,从学生的经验和已有的知识出发……学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。这一理念教师们都已知道,而家长们却不是很清楚,在辅导孩子学习时经常是脱离生活而纸上谈兵。本节课的教学是专为我校家长开放日而设计的。要求学生能根据要求用四舍五入法求小数的近似数,进一步掌握四舍五入法,丰富所学知识。我的设计分如下几个环节:⑴创设情景、揭示课题⑵复习铺垫,促进迁移;(3)自主探究、合作交流(4)独立学习,掌握知识。⑸畅谈收获,体验成功。

  【片断与反思】

  【片断一】

  创设情景、揭示课题

  师:昨天老师到银行办事,只见一位老爷爷和银行工作人员在争论着。原来老爷爷的利息单上写着税后利息:9.547元,银行工作人员付给爷爷9.5元,爷爷觉得不合理,两人发生了争论。你能判一判:付多少利息钱给爷爷比较合理呢?

  生一:我认为应该付给爷爷9元5角4分,因为人民币的单位有只有元、角、分,第三位小数应该省略。

  生二:我有不同意见。第三位小数是“7”,它比5大,如果直接省略不妥当,,应该向前一位进1,所以应该付给爷爷9元5角5分。

  师:现在存在分歧了,你能谈谈你的处理意见吗?

  (学生交流片刻,一致认为应该付给爷爷9.55元)

  生三(若有所思):我听说人民币还有比分更小的单位是厘。不过我没见过几厘钱。

  师:你真是个见识多广的孩子。确实,生活中有“厘”这个单位,1分=10厘。由于这个单位太小了,在实际生活中很少用到它。

  生四:我发现在买东西的时候也没有用到“分”了,都是几元几角了。

  师:你确实很会观察。现在,随着国民经济的发展,人们的消费水平提高了,“分”这个人民币单位几乎从生活中取消了。平时涉及到“分”时,一般都“四舍五入”到“几角”了。

  生五:那我觉得应该付给爷爷9元5角钱。

  生六:我认为应该付给爷爷9元6角钱。

  群生一:9元5角

  群生二:9元6角(声音越来越大,争论得面红脖粗)

  师:好!争吵总该有个说理依据。今天我们学了求一个小数的近似数之后,你就会非常轻松地解决生活中这类现象了。(出示课题:求一个小数的近似数)

  【反思】

  数学的兴趣和学习数学的信心对学生来说是十分重要的问题,教师就应该将学生的生活与数学学习结合起来,让学生熟知.亲近.现实的生活化的数学走进学生视野,进入数学课堂,使数学教材变得具体.生动.直观,使学生感悟,发现数学的作用与意义,学会用数学的眼光观察周围的客观世界,增强数学作用意识。为了创设更好的教学情境,了解教材内容体系,了解学生的兴趣爱好,应选择既贴近学生生活,又紧扣教材知识内容的实际问题作为情境,这里从学生熟悉的“存钱得利息”生活情境中引入,在讨论、说理的过程中,让学生初步感知学“求小数的近似数”是生活所趋。把它作为实际背景来区分准确数和近似数容易被学生所接受,使学生感受数学与人类的密切联系,体会数学的价值、增强用数学的意识和学好数学的愿望和信心。

  【片断二】

  自主探究、合作交流

  (一).出示例题:

  例1.李明在运动会中的跳远成绩是2.953米,你知道他跳远成绩的近似数是多少吗?

  接着明确提出要求:

  1.保留两位小数2.保留一位小数3.保留整数

  然后让学生进行独立思考,发表意见,说出结果及想法。

  1、保留两位小数

  师提示思考:保留两位小数要看哪一位上的数?

  (1)学生独立探索。

  (2)小组交流。

  (3)反馈后总结:要保留两位小数,就要省略百分位后面的数,要看千分位上的数。运用四舍五入法,“千分位上的3不满5,舍去。

  2.953≈2.95

  师讲解:保留两位小数,表示精确到百分位。

  师:6.587你会保留两位小数吗?把你的方法介绍给同学们吧。

  2、保留一位小数

  (1)小组合作学习。

  (2)组内交流,组长汇报交流结果。自己总结:要保留一位小数,就要省略十分位后面的数,要看百分位上的数。百分位上是5,省略尾数后向十分位进1。十分位上9+1=10,满十又要向前一位进一,连续两次进位。

  2.953≈3.0

  师:近似数3.0末尾的0能不能去掉,为什么?

  生一:可以去掉,根据小数的性质:去掉小数末尾的0,小数的大小不变。

  生二:0不能去掉,如果去掉就保留到了个位。

  师:现在有两种不同意见了。你赞同哪一种说法?小组交流交流。

  生交流后,一致认为:0不能去掉。

  师:确实,近似数末尾的0不能去掉。它起到“占位和表示精确度”的作用。

  师问:刚才我们已知道“保留两位小数,表示精确到百分位。”那么保留一位小数,表示精确到哪一位呢?

  生齐答:保留一位小数,表示精确到个位。

  3.保留整数

  师:你认为该怎样处理呢?把你的意见和同桌交流。

  点名汇报:保留整数,表示精确到个位,就要省略个位后面的数,要看十分位上的数。十分位上的9满5,省略尾数后向个位进1。2.953≈3

  (二)小结:求小数近似数的方法。

  要保留整数(表示精确到个位),就要省略个位后面的尾数,把十分位上的数四舍五入;要保留一位小数(表示精确到十分位),就要省略十分位后面的尾数,把百分位上的数四舍五入……

  【反思】

  在数学过程中,教师应该充分利用学生的认知规律,已有的生活经验和数学的实际,转化“以教材为本”的旧观念,灵活处理教材,根据实际需要对原材料进行优化组合。数学教学中,要从多方面“找”数学素材和多让学生到生活中“找”数学,“想”数学,真切感受“生活中处处有数学。”根据这一理念,本环节教学时,例题1不是课本中的例题,是我根据学生已有的知识经验而编制的例题,目的是让学生综合应用所学知识和技能解决问题、发展应用意识、在探索中形成自己的观点,能在相互交流和反思的过程中逐渐完善自己的想法。在教学过程中,学生的思维是活跃的,教学采用学生自主探究、合作交流的学习方式,鼓励学生积极主动地参与探索新知的全过程。在小组交流中把学生的思维充分暴露出来,加深学生对“用四舍五入法求小数的近似数”的理解。教师善于提出问题引导学生思考。所提出的问题不论是实际问题还是理论问题都紧密结合教学内容,并编拟成科学的探究程序。所以在教学过程中,我是分层次教学的,重点放在教学“①保留两位小数”的方法上,坚持启发式,让学生多说多讨论,激发学生积极思维,引导他们自己发现和掌握有关规律。教师再帮助分析讲解,使学生的思路更加清晰;在教学“②保留一位小数”时,则问得较少,使学生能根据刚才的知识形成一条清晰的思路。;而“③保留整数”我根本不用讲解,学生就能独立自主地解决问题了。

  【片断三】

  独立学习,掌握知识。

  (一)教学例

  2.豆豆身高0.984米,我们可以说豆豆大约高﹎﹎﹎﹎米。(你想保留几位小数就保留几位小数)

  学生思考,自由保留小数位数回答出0.984米的近似数,老师板书,请其余的同学说说分别保留了几位小数。

  生一:0.984米≈1米

  师:你知道他是保留了几位小数?

  生二:他是保留到整数的

  生三:这个数也表示精确到个位

  生四:0.984米≈1.0米

  生五:这个结果保留了一位小数

  生六:也是精确到十分位

  生七:我还会保留两位小数0.984米≈0.98米

  生八:保留两位小数又表示精确到百分位

  (二)师:今天我们学习的知识就在课本第73面。请认真看书73页,核对一下刚才例2中的结果,有什么疑问请提出来。

  如果没有疑问,就请找出书中你认为需要掌握的知识,做个记号。然后大声地读出来。

  【反思】

  传统的课堂教学要求教师重视知识的传授,强调知识的`熟练程度,新教材要求只是通过几个问题,几句话,做适当的引导,把更多的时间交给学生,留给大量的时间让学生去思考、去讨论,不仅能教会学生与他人合作,与他人交流思维的过程和结果,而且能培养学生形成实事求是的态度以及进行质疑和独立思考的习惯。因此,在本环节的设计中,我把课本中的例题作为兴趣例题2,发散学生思维,让他们想如何保留就如何去做,既尊重了学生,又掌握了知识。

  对于小学生来说,要特别重视学法指导,注意发挥教材在学生学习中的作用,使学生学会自我学习、自我发展。现代科学日新月异,知识的海洋博大无比。我们教师不能也不可能教给学生所有的知识,但是我们可以教给学生获取知识的本领——学会学习,学会看书掌握知识。这种学习的技能一旦形成将终身受益。

  【片断四】

  畅谈收获,体验成功

  师:同学们,这节课我们学习了什么?有什么收获?

  生一:我学到了怎样求一个小数的近似数。

  生二:我知道求一个小数的近似数也要用四舍五入法

  生三:保留整数,表示精确到个位…………

  师:那么现在,你再会解决“老爷爷得利息”这个问题吗?

  生:(干脆利落)会

  师:老爷爷的利息单上写着税后利息:9.547元,你能判一判:付多少利息钱给爷爷比较合理呢?

  生一:我认为这个问题就是求小数的近似数。

  师:你觉得在实际生活中应该保留几位小数比较合理呢?

  生二:我觉得在实际生活中,应该保留一位小数。因为大家都知道,我们现在的用到人民币最小的单位是角。

  生三:9.547元≈(9.5)元

  群生:(欢喜地)对,应该付9.5元

  师:你发现生活中哪些地方有小数?请你大声说出来。你想精确到哪一位?考考你的同桌吧。

  生同桌互练。

  师:小数的近似数在我们生活中应用非常广泛,请同学们课余留心观察,看还有什么地方有了小数近似数,下节课大家再来继续交流。

  【反思】

  学生学习数学是“运用所学的数学知识和方法解决一些简单的实际问题的,是必要的日常生活的工具。”引导学生把所学知识联系,运用于生活实际,可以促进学生的探索意识和创新意识的形成,培养学生初步的实践能力。学生在解决完“正确处理老爷爷的利息”后兴奋不已。然后又“参与寻找生活中的小数”过程中,从多方面“找”数学素材和多让学生到生活中“找”数学,“想”数学。这样的设计,不仅贴近学生的生活水平,符合学生的需要心理,而且也给学生留有一些瑕想和期盼,使他们将数学知识和实际生活联系得更紧密,学生真切感受“生活中处处有数学。”体会到了数学在生活中的用处。让数学教学充满生活气息和时代色彩,真正调动起学生学习数学的积极性,培养他们的自主创新能力和解决问题的能力。

  【点评与拓展】

  《新课程标准》指出:数学教学活动必须建立在学生的认知发展水平和已有知识经验基础之上。教师应激发学生学习的积极性,向学生提供从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。本节课执教者立足于从现实生活入手,创设教学情景,生成数学问题,引发学生的探索兴趣,交给学生学习方法。体现了“数学源于生活,又用于生活”的教育理念。

  灵活地处理教材:《新课程标准》提出:教师要创造性地使用教材,不能拘泥于教材。教材中以单独一个例题(量豆豆的身高)出现,执教者巧妙地做了变动,从生活实际引出学生跳远的成绩2.953米,然后重点教学。使学生体会到生活中有数学,生活中用数学,提高了学生的数学应用意识。把教材的例题作为次重点例2,让学生看图,想保留几位小数就保留几位小数,学生掌握了知识,也提高了兴趣。这些构想和尝试体现了教师对教材使用的科学态度,也表现出了对新教材处理的灵活性。

  开放的教学风格:《新课程标准》提出:数学教学要给学生提供充分参与数学活动的机会,让他们学会从数学学习中发现问题,通过合作交流,主动探索,寻找解决问题的方法,弄清数学知识之间的联系和区别,体现学生是数学活动的主体,教师是数学活动的组织者、引导者和合作者的理念。执教者从“爷爷的利息”入手,生成了问题。然后充分尊重学生,让他们谈谈该如何处理……整节课教师在为学生创设民主、开放、和谐的学习氛围,学生学得兴趣盎然。

  “教学与方法”、“生活与数学”、“教材与课堂”这些关系的处理,从本节课我们可以看到高老师正在努力尝试……

  近似数教学反思 篇5

  小数除法经常会出现除不尽的情况,或者商的小数位数较多的情况。但是在实际工作和生活中,并不总是需要求出很多位小数的商,而往往只要求出商的近似值就可以了。本节课是在学生已经学过求一个小数的近似值,以及求小数乘法的积的近似值的基础上进行教学的,这里只是通过例7一道计算钱数的应用题,让学生自己想一想,怎样取商的近似值。由于计算钱数时一般算到“分”就可以了,那么题中的结果应保留两位小数,除的时候要除到千分位,也就是要先算出三位小数。然后让学生自己确定,怎样把小数点后面第三位小数按“四舍五入法”处理。接着,让学生试算“做一做”中的练习题。这一题是让学生根据不同要求取商的近似值。使学生更明确,算出的小数位数都要比要求保留的小数位数多一位,然后按“四舍五入法”省略尾数。

  1、在读题中理解题意,渗透思想教育。例题给学生留出了更为自由发挥的空间,一句“从中读出了什么信息”的开放问题,引导着学生建立条件与条件间的联系,培养了学生根据条件提出问题的能力,提高了学生收集、处理信息的水平。

  2、在试算中发现问题,联系旧知思考。教师有意制造“除不尽”的矛盾冲突,把学生推到自主探究的前台。学生联系求小数的近似数这一旧知,明确了解决问题的方向——取近似数;把握题目中的`一个“元”字,结合已有的关于人民币的处理经验,获得了保留两位小数的信息,使学生亲历了“做数学”的过程,学会了用旧知识解决新问题的策略,体验到了学习数学的快乐。

  3、在交流中相互启发,探寻取值方法。除到小数位数的哪一位是求商的近似值的关键,教师以同一问题“还要继续除下去吗?”充分开发和利用教学中的现有资源,加强生生之间的互动,在对比中探寻取值方法,把教学建立在更广阔的交流背景之上,为课堂教学注入新的活力。

  4、在小结中对比沟通,形成整体认识。充分利用课堂,致力于学生反思意识的培养,有利于学生把零碎的知识串联起来,建构自己的知识系统;让每一位学生站在元认知的高度重新审视自己的学习方式,这既是对知识本身的反思,更是对整个学习过程的反思,对知识、情感、能力、方法等各个方面的反思,这无论是培养学生从小养成良好的学习品质,还是对学生的终身发展都有着重要的意义。

  从课后的练习中来看,学生对于这部分内容的算法是清楚的,但是在笔算的错误率还比较高,还需要对计算技能进行训练。

  近似数教学反思 篇6

  数学的兴趣和学习数学的信心对学生来说是十分重要的问题,我把学生的生活与数学学习结合起来,让学生熟知.亲近.现实的生活化的数学走进学生视野,进入数学课堂,使数学教材变得具体.生动.直观,使学生感悟,发现了数学的作用与意义,学会了用数学的眼光观察周围的客观世界,增强数学作用意识。我从学生熟悉的“整数四舍五入”和“学生量身高”的生活情境中引入,在讨论、说理的过程中,让学生初步感知学“求小数的近似数”是生活所趋。把它作为实际背景来区分准确数和近似数容易被学生所接受,使学生感受到了数学与人类的密切联系,体会到了数学的价值、增强了用数学的意识和学好数学的.愿望和信心。

  在教学过程中,我充分利用学生的认知规律,已有的生活经验和数学的实际,转化“以教材为本”的旧观念,灵活处理教材,根据实际需要对原材料进行优化组合。数学教学中,要从多方面“找”数学素材和多让学生到生活中“找”数学,“想”数学,真切感受“生活中处处有数学。”根据这一理念,本环节教学时,例题1是课本中的例题,目的是让学生综合应用所学知识和技能解决问题、发展应用意识、在探索中形成自己的观点,能在相互交流和反思的过程中逐渐完善自己的想法。在教学过程中,学生的思维是活跃的,我采用学生自主探究、合作交流的学习方式,鼓励学生积极主动地参与探索新知的全过程。在小组交流中把学生的思维充分暴露出来,加深学生对“用四舍五入法求小数的近似数”的理解。我提出问题引导学生思考。所提出的问题不论是实际问题还是理论问题都紧密结合教学内容,并编拟成科学的探究程序。所以在教学过程中,我是分层次教学的,重点放在教学“①保留两位小数”的方法上,坚持启发式,让学生多说多讨论,激发学生积极思维,引导他们自己发现和掌握有关规律。教师再帮助分析讲解,使学生的思路更加清晰;在教学“②保留一位小数”时,则问得较少,使学生能根据刚才的知识形成一条清晰的思路。;而“③保留整数”我根本不用讲解,学生就能独立自主地解决问题了。

  传统的课堂教学要求教师重视知识的传授,强调知识的熟练程度,新教材要求只是通过几个问题,几句话,做适当的引导,把更多的时间交给学生,留给大量的时间让学生去思考、去讨论,不仅能教会学生与他人合作,与他人交流思维的过程和结果,而且能培养学生形成实事求是的态度以及进行质疑和独立思考的习惯。因此,在本环节的设计中,我发散了学生的思维,让他们想如何保留就如何去做,既尊重了学生,又掌握了知识。

  对于小学生来说,要特别重视学法指导,注意发挥教材在学生学习中的作

  用,使学生学会自我学习、自我发展。现代科学日新月异,知识的海洋博大无比。我们教师不能也不可能教给学生所有的知识,但是我们可以教给学生获取知识的本领——学会学习,学会看书掌握知识。这种学习的技能一旦形成将终身受益。

  这节课是掌握知识教学,在上课之前自己感觉整节课的设计挺不错的,开始的分类,由放到收,让学生在探索中学习。而在知识点的获取时,让学生主观发现,分析比较,概括出求一个小数的近似数的方法,体现了教师的主导作用和学生的主体地位。整节课的设计,总体感觉还是比较适合学生的思维发展的,在结构上,我也注重了前后呼应,使整堂课也显得比较紧凑。

  但是上完之后,我总觉得:学生掌握得不是很好,尤其是根据“四舍五入法”求一个小数的近似数,这里需要学生从逆向思维的角度去思考,但学生的逆向思维似乎都比较欠缺,这是我对学生在能力上的估计不足。整节课时间比较紧张,后面巩固练习和课小结的环节有点匆匆过场的味道,与自己曾设想的场景有一定的差距。自己激励性的语言还欠缺,这也将影响到学生的学习情绪。课堂气氛也不够活跃。

  总之,我觉得通过这一节课我学到了好多,作为一名教师,不能完全按照自己的意愿去设计课程,要考虑到学生。在今后的日子里,还得在实践中不断完善自己的教学方法。

  近似数教学反思 篇7

  师:(出示统计表) 四个城市小学生人数情况统计表

  城 市 名 称 小 学 生 人 数

  A 91995

  B 94955

  C 95955

  D 98955

  师:根据这个统计表,你能知道什么?

  生1:我知道A城市小学生最少,D城市小学生最多。

  生2:我知道这四个城市小学生人数的后三位数都是995,万位上都是9。

  生3:我知道这四个城市的人数都比9万多,都比10万少。

  师:同学们真会发现!这些数据都是经过认真调查统计获取的,一个不多,一个不少,都是准确数。(板书:准确数)但在日常生活中往往不说得这样准确,而是主说出大约是多少。例如,我们班有67人,大约是几十人?

  生:大约是70人。

  师:能说说理由吗?

  生:因为67人接近70人,所以大约是70人。

  师:像这几个城市的小学生分别大约是多少万人,为什么?

  生1:A城市大约是9万人,因为91955接近9万。

  生2:B城市大约也是9万人,94955也接近9万。

  生3:C城市大约是10万人,因为95955接近10万。

  生4:D城市大约是10万人,因为98955也接近10万。

  (师进而引出“近似数”和“≈”,板书如下:)

  91955≈9万

  94955≈9万

  95955≈10万

  98955≈10万

  师:刚才我们把这几个数写成了用“万”作单位的近似数。为什么有的约等于9万,而有的约等于我10万,请你们仔细观察这几个算式,看有什么发现?

  生1:我发现这几个数只有千位上的数不同,千位上是1、4,近似数是9万。

  生2:我有补充!千位上是5、8,近似数是10万。

  生2:我发现这几个数的近似数与千位上的数有关系,如果千位上的数比5小,这个数就更接近9万,所以它们的近似数是9万;如果比5大或等于5,这个数更接近10万,所以它们的近似数就是10万。

  师:同学们说的太妙了!如果把一个数写成用万作单位的近似数,关键要看千位上的'数,如果小于5就舍去,如果满5就向前一位进“1”再把后面的数舍去。这就是我们今天学习的“四舍五入法”。

  生1:老师,我有不同意见!如果千位上是5,而这个数不是95955,而是95000,我觉得它的近似数可以是9万!就不能“五入”了!

  生2:但也可以是10万!

  生3:我认为既可以是9万,也可以是10万!

  师:能讲讲道理吗?

  生1:因为95000比9万多5000,比10万少5000,它既接近9万,也接近10万,所以它的近似数可以是9万,也可以是10万。

  生2:因为95000离9万和10万一样远,所以说它的近似数是9万行,是10万也行。

  师:你们说的还真让人信服!像95000的近似数,完全可以这样理解!还有其它不同意见吗?

  ……

  近似数教学反思 篇8

  教材解读:

  本节课教学用”四舍五入”的方法求一个小数的近似数。教材以地球和太阳之间的距离为素材,设计了三个问题组织学生进行探索。先通过例1,引导学生用“四舍五入”的方法把1.496精确到十分位,再通过例2,引导学生用同样大方法把1.496精确到百分位,然后引导学生比较上面求出的两个近似数,理解保留的小数位数越多,求出的近似数越精确。教材安排“试一试”与例题不同的是,这里取近似数的过程中需要把百分位舍去。并引导学生总结和归纳求小数近似数的方法。

  教学中引入生活实例,通过探究、互动、总结、归纳等活动,让学生掌握求小数的近似数的方法,要注意结合具体情境求小数近似数,让学生体会数学的应用价值。

  教学重点:求小数近似数的方法。

  教学难点:理解保留的小数位数越多,求出的近似值越精确。

  目标预设:1、会根据要求用“四舍五入”的方法求一个小数的近似数。

  2.使学生初步了解求一个小数的近似数时表示的精确程度,理解求得一个小数的近似数时,小数末尾的“0”不能去掉。

  3、进一步理解和掌握所学的知识,体会数学在日常生活中的广泛应用,感受数学的文化价值。

  学生经验:学生已经掌握了把大数目改写成整万、整亿数和整数近似数的知识,为本节课求一个小数的近似数奠定了基础。

  教学准备:小黑板

  教学过程:

  一、创设情景、揭示课题

  昨天老师到银行办事,听见一位老爷爷和储蓄员在争论着。原来老爷爷的利息单上写着税后利息:9.547元,储蓄员付给爷爷9.5元,爷爷硬要9.6元,你觉得付多少比较合理?

  学生回答后,问这个数据是怎么得到的?

  今天我们学了求一个小数的近似数之后,你就会解决生活中这类现象了。(出示课题)

  二、复习铺垫

  1.把下面的叙述换一种说法:

  (1)1999年全国有小学生145371600人。也可以说:1999年全国大约有小学生(万)人。

  (2)光的传播速度是每秒钟299800千米。也可以说:光的传播速度大约是每秒钟(万)千米。

  2.下面的□里可以填上哪些数字?32□645≈32万 47□05≈47万

  (1)独立完成。

  (2)校对答案。

  (3)说说求近似数的方法——四舍五入法。

  板书:求近似数一般用四舍五入法

  三、自主探究、合作交流

  (一)、出示例题:

  例1.地球和太阳之间的平均距离大约是1.496亿千米。

  接着明确要求:

  精确到十分位是多少亿千米?

  精确到百分位是多少亿千米?

  精确到整数是多少亿千米?

  然后让学生进行独立思考,发表意见,说出结果及想法。

  1、精确到十分位

  思考:精确到十分位就是要保留几位小数?

  (1)学生独立探索。

  (2)小组交流。

  (3)反馈:要保留一位小数,就要省略十分位后面的数,要看百分位上的数。百分位上的9满5,进一。

  1.496亿千米≈1.5亿千米

  讲解:精确到十分位,就是保留一位小数。

  2、精确到百分位

  (1)独立完成

  (2)组织交流。

  精确到百分位就是要保留两位小数,就要省略百分位后面的数,要看千分位上的数。千分位上的6,省略尾数后向百分位进1。百分位上9+1=10,满十又要向前一位进一。

  1.496亿千米≈1.50亿千米

  问:近似数1.50末尾的0能去掉,为什么?

  学生讨论:明确:不能去掉,去掉就不符合要求了。

  教师总结:0不能去掉,它起到占位的作用。

  3、比较精确度。

  问:1.5和1.50哪个更精确?

  学生讨论后汇报想法。

  想法1:1.5是精确到十分位的结果,1.50是精确到百分位的结果,所以1.50比1.5更精确。所以1.50末尾的0不能去掉。

  想法2:近似值是1.5的两位小数在1.45-1.54之间,而近似值是1.50的三位小数在1.495-1.504的范围更大,所以1.50比1.5更精确。

  4、精确到整数

  (1)独立完成

  (2)组织交流。

  精确到整数就要省略百分位后面的数,要看十分位上的数。十分位上的4,

  省略小数点后的尾数。

  5、教学“试一试”

  学生独立解决,集体订正。

  引导学生比较与刚才例题的区别,进一步明确什么时候应四舍,什么时候应五入。

  (二)小结:

  教师提出问题:求小数近似数应注意什么?

  引导学生讨论知道:求一个小数的近似数要注意两点:

  (1)要根据题目的要求取近似值,

  如果要保留整数,就要看十分位是几;要保留一位小数,就看百分位是几……然后按“四舍五入法”决定是舍还是入。

  (2)取近似值时,在保留的小数位里,小数末一位或几位是0的,0应当保留,不能丢掉。

  (三)、教学“练一练”

  学生独立解决,集体订正。

  电评时引导学生在两方面进行比较:

  (1)按不同精确要求求近似数的比较。

  (2)取一个数的近似数与把一个数改写

  成以“万”或“亿”作单位的小数的方法的比较。

  第二小题练习完毕后,再要求学生把改写后的小数和求出的近似数分别放入原来的语言环境中读一读、比一比,体会到用“万”作单位的小数及其近似数的应用价值。

  四、练习巩固,拓展应用

  1.填空:

  ① 求一个小数的.近似数,要根据需要用()法保留小数数位.保留整数,表示精确到()位;保留一位小数表示精确到()位;保留两位小数表示精确到()位……

  ②近似数的结果一般地说6.0要比6精确.因为6.0表示精确到了()位,6表示精确到了()位,所以6.0后面的“0”不能丢掉.

  2.判断题(用手势表示“√”或“×”)

  ①3.97精确到十分位是4.0。()

  ②把9.996精确到百分位是10.00。()

  ③8和8.0的大小相等,它们的精确度也相同。()

  ④在表示近似数时,小数末尾的0应该去掉。()

  3.“练习七”第五题。

  (1)学生独立完成

  (2)教师检查反馈。

  说明:把王强身高精确到百分位,体重精确到个位,让学生体会到实际应用中要根据需要来确定近似数的精确程度。

  4、“练习七”第6题。

  (1)组织学生观察、比较,说说哪组的两个数是等值。哪组的两个数是近似。

  (2)独立填写后再组织汇报交流。

  5、“练习七”第7~8题。

  学生独立审题并解答。

  6、解决前面的问题。在实际生活中,9.547元≈()元

  5.小数的近似数在我们生活中应用非常广泛,请同学们课余留心观察,看什么地方有了小数近似数,下节课来大家交流。

  五、课堂作业:

  “练习七”第4题。

  六、收获提炼

  今天这节课你有哪些新的收获?还有什么要提醒同学们注意的地方吗?

  七、课后反思

  1、探索是数学的生命线,没有探索就没有数学的发展。课始,先让学生明确探索的目标,给学生以思维的方向。课中,引导学生从求整数的近似数迁移至小数,使学生的探索思维多角度、多层次展开,在学生探索的过程中学习数学、理解数学,从而感受到数学的魅力。

  2、新课程注重强调学生的主体地位。但是我认为在特定的课堂时空中,要让没有多少探索经验和能力贮备的学生完全自主地“找”出求小数近似数的方法,也实在有些勉为其难。

  因此,在课堂教学中我注意适度地加以引导,做到了放得“开”,收得“拢”;放得适度,收得自然。

  既尊重了学生的主体地位,又张扬了学生的个性,同时有效地完成了课堂教学任务。

  近似数教学反思 篇9

  对于本节课我认为是属于较难理解的,虽然近似数在日常生活中有着重要的作用,它与精确数不同,它仅表示某一对象的一定范围,所以要能根据实际问题的需要求一个数的近似数、培养学生的估计意识、发展学生的数感是很重要的。

  一、让学生在生活中体验。

  数学源于生活,生活中充满数学,并最终服务于生活。尽管如此,教材的编排由于受到各方面条件的限制,有些教学内容难以展现出一个富有生活气息的'情境,教师应想方设法为抽象的教材内容选择、补充生活背景,使数学贴近学生生活,变得易于感受。从学生用“接近”一词来表述理由可以看出:学生不仅体验到了这些数的近似数,而且明白了为什么。在此基础上引入“近似数”和“≈”,顺理成章,学生非常容易接受。

  二、让学生在比较中体验。

  比较是常用的一种数学思考方法。通过比较事物之间的相同点和不同点。便于抽取出事物普遍存在的规律、区分出个体独有的特征。只有经历这样的过程,才能使直观感受到的经验得以提升,进入学习数学化的过程。

  虽然在课堂上学生都参与到学习活动中了,但是在作业中,求近似数还是出现了不少问题,如何让学生能比较熟练的找到不同程度的近似数,有何有效的教学方法,是困绕我的问题。

  近似数教学反思 篇10

  上周五学生放学后,老师们坐在一起针对“先学后教”的教学模式在操作过程中的困惑与困难进行了探讨,牛主任的话给了我很大的启发——不能完全抛开情境,教学模式也要针对各种不同课型有所改变,不要完全被导学案范例框住。只要本着“学生是课堂的主体,学生能学会的老师不教”的原则,就可以了。

  昨天我们学习《积的近似数》,我觉得这节内容很简单,所以课前没有做任何准备。上课伊始,我问孩子们:“孩子们,你们认为,是人的嗅觉灵敏,还是狗的嗅觉灵敏呢?”“狗的嗅觉灵敏”孩子们异口同声。然后我在黑板上写下了“人的嗅觉细胞有0.049亿个,狗的.嗅觉细胞是人的嗅觉细胞的45倍。”并随口问道,“你知道狗的嗅觉细胞有多少亿个吗?”孩子们马上动笔算起来,我让两名后进生来黑板板演。孩子们计算很准,速度也很快。全班只有5个孩子算错。然后我在问题里加了“大约”两个字,题后加了括号,要求保留一位小数。大约三分之二的学生马上就有了结果,兴奋地举起了小手。我找了一名没有举手的孩子说出了结果,孩子们都赞同这个结果。然后我又组织孩子们在小组内说说,该怎么求积的近似数。不足2分钟,孩子们都美滋滋地坐好了。又找了几个后进生汇报,虽然语言组织不太好,但大家也都能听明白她的意思,看来学习效果还不错。接着让学生总结本节课的内容,板书课题,然后做练习巩固。课后反思有以下几点:

  (1) 学习内容比较简单,学起来比较轻松。

  (2)课前的情境也起到了激趣作用,调动了学习的积极性与主动性。

  (3) 评级机制跟得上,小组评比不仅调动了学生的学习积极性,而且促使优等生主动帮助组内的学困生,(我给他们讲过短板效应,并且经常提醒她们记住短板效应)学习的氛围浓厚,学习效果也好。开学一周以来,这节课是学生合作学习(主要是优等生帮助学困生)面积最大的,效果最好的。我已经将各组评比表张贴上墙,希望它能起到应有的作用,促进良好学风的形成。

  近似数教学反思 篇11

  《商的近似数》这一课的教学重点是如何根据需要保留一定的小数位数。

  出于上面的思考,我设计一些问题让学生独立思考、探索求商的近似数的方法以完成这一课的学习。

  在例题7的`教学中,提出:“19.4/12计算时需要一直除完吗?”让学生带着问题试着做一做,经历了独立的计算与思考后,学生发现问题关键:计算只需要除到小数部分第二位。学生顺利掌握了保留一位小数求商近似数的方法。保留两位小数求商近似数的方法,学生知识类推自然地就会。最后小结求商的近似数的方法,当然也是水到渠成,整节课自然流畅。

  近似数教学反思 篇12

  学生对求一个小数的近似数掌握较好,基本能够根据题目要求求出一个小数的近似数。

  然而对于把不是整万或整亿的数改写成用“万”或“亿”作单位的数就不乐观了。主要有以下几个方面的原因:

  1、以前学生学过把整万或整亿的数改写成用万或亿作单位的数,而今天所学的是把一个不是整万或整亿的数改写成以“万”或“亿”作单位的数,这就增加了难度,学生不知小数点后面的小数部分该如何处理。

  2、前面刚学过求一个小数的`近似数,学生往往把求一个小数的近似数和把不是整万或整亿的数改写成用“万”或“亿”作单位的数相混淆,错把改写当成了求一个小数的近似数。

  针对以上情况,解决办法:一方面给学生讲清把不是整万或整亿的数改写成用“万”或“亿”作单位的数和把整万或整亿的数改写成用万或亿作单位的数方法相同,后者的改写是移动小数点,其实前者也是移动小数点,只不过运用了我们后面所学的小数的基本性质,把小数点后面的零去掉了。另一方面,讲清求一个小数的近似数和把一个数改写成指定单位的数有什么区别:求近似数需要省略后面的尾数,所以求的是一个数的近似数;而改写成以“万”或“亿”作单位的数,只要把小数点向左移动四位或八位,加一个单位就可以,没有大小的改变数的大小;

  3、多讲多练,在不断的重复练习过程中,让学生自悟。

  近似数教学反思 篇13

  通过本课的教学,我意识到以下几点:

  1、让学生在生活中体验。

  数学源于生活,生活中充满数学,并最终服务于生活。这堂课通过提供生活中的一些数据,例如:班级人数、某市人口总数等一些数据,让学生初步感受这些信息,引入准确数,接着让学生根据自己的生活经验,说说哪些是准确数,哪些是近似数,并让学生说说自己是如何来判断近似数的。从学生找出“大约、达、近”等一些词可以看出:学生不仅体验到了这些数的近似数,而且明白了为什么。在此基础上引入“近似数”和“≈”,顺理成章,学生非常容易接受。

  2、让学生在比较中体验。

  比较是常用的一种数学思考方法。通过比较事物之间的相同点和不同点。便于抽取出事物普遍存在的规律、区分出个体独有的特征。只有经历这样的过程,才能使直观感受到的经验得以提升,进入学习数学化的过程。

  教学如何求近似数是本课的一个难点,我通过独立的看一看,自己试一试,小组讨论交流等活动,让学生做学习的主人,给他们提供一个广阔思维的空间,鼓励他们自己去发现数学中的一些规律和方法,让学生经历知识的形成与发展过程,从中体会探究与发现带来的乐趣。在合作交流的过程中,学生们把自己个性化的想法展示出来,使每个学生都得到不同程度的发展。本课利用数轴,让学生体会多位数所在区域,靠近的整万数,从而掌握求近似数的方法,即四舍五入法。能根据实际问题的需要求一个数的近似数,培养学生的`估计意识,发展学生的数感。但是在练习中,求近似数还是出现了不少问题,如精确到万位,有的学生精确到多位数的最高位,如何让学生能比较熟练的找到不同程度的近似数,有何有效的教学方法,是我还在思考的问题。

  近似数教学反思 篇14

  《求一个小数的近似数》这节课教学内容是建立在学生已经对求整数的近似数基础上进行教学上,这两个内容都是让学生根据四舍五入法去求数的近似数,但是不同点就是近似的部位不同,针对这个情况,在教学这节课时,以求整数的近似数进行导入,让学生说一说近似的依据——也就是四舍五入法,从而引入小数近似数的教学。这节课是掌握知识教学,在上课之前自己感觉整节课的设计挺不错的',开始的分类,由放到收,让学生在探索中学习。而在知识点的获取时,让学生主观发现,分析比较,概括出求一个小数的近似数的方法,体现了教师的主导作用和学生的主体地位。整节课的设计,总体感觉还是比较适合学生的思维发展的,在结构上,我也注重了前后呼应,使整堂课也显得比较紧凑。

  但是上完之后,我觉得:学生掌握得不是不好,尤其是根据“四舍五入法”求一个小数的近似数,这里需要学生从逆向思维的角度去思考,但学生的逆向思维似乎都比较欠缺,这是我对学生在能力上的估计不足。对于重难点的突破尚有所欠缺,驾驭教材的能力有所欠缺。同时,应该在课堂上多给学生自己表达的机会,同时在“冷场”的时候多调动学生的积极性。

  而《求一个小数的近似数》这一部分内容的练习题目要求很多样,如同是保留一位小数,可以说是保留一位小数,也可以说是精确到十分位,或者是省略十分位后的数等等,针对这一情况,让学生在练习时多读题,并逐一进行分析,如精确到十分位,省略十分位后的数都是要求保留几位小数,这样学生就能更好的理解。

【近似数教学反思】相关文章:

近似数教学反思04-06

近似数的教学反思04-15

《近似数》教学反思06-25

近似数教学反思06-14

积的近似数教学反思04-15

《小数的近似数》教学反思03-27

小数的近似数教学反思04-22

求商近似数教学反思07-05

《商的近似数》教学反思06-22

商的近似数教学反思04-03