乐文网>教学资源>教学反思>平行四边形面积的教学反思

平行四边形面积的教学反思

时间:2023-04-23 08:21:50 教学反思 我要投稿

平行四边形面积的教学反思

  身为一名人民教师,课堂教学是我们的工作之一,通过教学反思可以很好地改正讲课缺点,教学反思应该怎么写呢?下面是小编收集整理的平行四边形面积的教学反思,希望对大家有所帮助。

平行四边形面积的教学反思

平行四边形面积的教学反思1

  人们常说,课堂教学始终都是一门缺憾的艺术。

  一、主要的成功之处:

  这节课主要采用了自主合作探究的学习方法,让学生观察、猜测,通过动手操作验证。整个教学思路清晰,重点突出,利用多媒体课件突破难点,收到了良好的效果。

  二、不足之处:

  在新课前没有复习平行四边形的底和高。因此,在操作各推导过程中学生对这两个概念显得很生疏,很多学生在画平行四边形底和高时出错,影响了教学进度和教学效果。

  三、质疑:

  用数方格的方法计算平行四边形的面积时,教材在这里安排了一个长方形和一个平行四边形的面积,让学生填表后对它们进行比较,这里暗示了两个图形之间的联系。让学生用数方格的.方法计算平行四边形的面积,然后在格里填出平行四边形的底和高与长方形的长和宽相比的内容,删去了长方形的部分,只留下一个平行四边形,不知这样处理是否合适。教学随想。

平行四边形面积的教学反思2

  前三个单元我一直要求学生每课预习,这种做法使得课堂内教学效率大大提高。但今天的内容我同样布置了预习,效果却不太理想。分析原因可能是预习后学生的动手操作少了一份探索成功后的欣喜,少了一些不同剪拼法的交流,学生积极性不高。针对这种现象,我准备采取两种不同策略进行对比实验。《三角形的`面积》我不要求学生预习,上课时根据学生情况灵活调控。梯形的面积我仍旧请同学们预习,但在预习中我布置一项作业,请他们思考,除了教材中的转化方法,你还能将梯形转化成我们已学过的其他平面图形吗?

  其次,本课不太成功的原因是今天有近一半的学生没有带学具来,他们无法参与到操作过程之中,影响了教学效果。看来带学具要反复强调,以确保教学活动落实。

  内容调整:建议将练习十五第5题调整到今天教学。因为此题不仅可以巩固面积公式,而且还能加深公式的理解与掌握。此题教学完后,可请学生在钉子板上围一个与指定长方形(或平行四边形)面积同样大小的平行四边形。

  学情反馈:从学生做练习十五第2题看出许多学生不会作高,要及时查缺补漏。

平行四边形面积的教学反思3

  新课标指出有效的数学活动不能单纯地依靠模仿与记忆,教师要引导学生经过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。在《平行四边形的面积》一课的教学中,我经过让学生动手实践,自主探究,让学生经历了知识的构成过程。反思这节课,我总结了一些成功的经验和失败的教训,具体概括为以下几点:

  一、注重数学专业思想方法的渗透。

  我们在教学中一贯强调,授人以鱼,不如授人以渔,在数学教学中,就是要注重数学专业思想方法的渗透。要让学生了解或理解一些数学的基本思想,学会掌握一些研究数学的基本方法,从而获得独立思考的自学本事。在这节课中,先让学生回忆平行四边形与长方形的联系,想一想长方形的面积是怎样求的?引出能够用数方格的方法来求平行四边形的面积。把这两个图形按每个格1平方米的方法来数,数的过程中提示学生:能够把不满一个格的按半个来数。学生数好以后,说一说数的结果。再让学生说说你是怎样数的?你发现了什么?有利于有本事的学生向转化的.方法靠拢。

  二、注重学生数学思维的发展

  数学教学的核心是促进学生思维的发展。教学中,教师要想方设法地经过学生数学知识学习,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一齐来。课堂教学中充分有效地进行思维训练,是数学教学的核心。在这节课中,设计了数一数、剪一剪、移一移、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?使学生得出结论:因为长方形的面积=长х宽,所以平行四边形的面积=底х高。学生掌握了平行四边形面积公式的推导方法,也为今后求证三角形、梯形等面积公式和其他类似的问题供给了思维模式。这个推导过程也促进了学生猜测、验证、抽象概括等思维本事的发展。

  三、分层运用新知,逐步理解内化

  对于新知需要及时组织学生巩固运用,才能得到理解内化效果。我本着重基础、验本事、拓思维的原则,设计了基础练习(算出下头每个平行四边形的面积。);提升练习(量出平行四边形的底和高的长度,并分别算出它们的面积。);

  发散练习(下图两个平行四边形的面积相等吗?为什么?在这条平行线之间,还能够画出几种形状不一样而面积相等的平行四边形。)整个习题设计部分,题量虽不大,但却涵盖了本节课的所有知识点,题目呈现方式的多样,吸引了学生的注意力,使学生应对挑战充满信心,激发了学生兴趣、引发了思考、发展了思维。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识。

  四、需要改善的地方

  本节课的不足之处有:在进行把平行四边形转化为长方形时,书上虽只给出了两种方法,可是实际上有很多不一样的剪法,而我也只强调了两种,对于一个学生出现的比较特殊的剪法粗略带过。并且这个环节过后,忘记强调一下,要沿着平行四边形的高剪下,才能平移拼成一个长方形。让学生说的部分还是显得很仓促,自我急于把正确答案给出,这是迫切需要改正的。

  教学是一门有着缺憾的艺术。做为教师,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改善,我们的课堂就会更加精彩。

平行四边形面积的教学反思4

  新课标指出“有效的数学活动不能单纯地依赖模仿与记忆,教师是要引导学生通过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。”

  《平行四边形的面积》一课的教学中,通过让学生动手实践,自主探究,让学生经历了知识的形成过程。我设立的教学目标是

  (1)使学生通过探索、理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积;

  (2)通过操作,观察和比较的活动初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。

  (3)引导学生初步理解转化的思想方法,培养学生的思维能力和解决简单的实际问题的能力。反思这节课,我总结了一些成功的经验和失败的教训,具体概括为以下几点:

  一、注重数学思想方法的渗透

  在教学设计方面,我先是创设情境,激发学生的学习兴趣,进出课题:《平行四边形的面积》,再让学生通过数方格,动手操作等、验证平行四边形的面积公式,最后通过练习,巩固知识,解决实际问题。

  二、注重学生数学思维的'发展

  数学教学的核心是促进学生思维的发展。教学中,通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。在这节课中,我设计了剪一剪、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?充分利用多媒体课件演示,形象、直观,使学生得出结论:因为长方形的面积=长×宽,所以平行四边形的面积=底×高。在此,我特别注意强调底与高应该是相对应的,通过观察、交流、讨论、练习等形式,让学生在理解公式推导的过程中学会解决问题。学生掌握了平行四边形的面积推导方法,也为今后推导三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个推导过程也促进了学生猜测、验证、抽象概括等思维能力的发展。

  三、注重了师生互动、生生互动

  新课程标准提倡学生的自主学习,在课堂教学中主张以学生为主体,注重师生互动和生生互动。师生应该互有问答,学生与学生之间要互有问答。在这节课中,我能始终面向全体学生,以学生为主体,教师为主导,通过教学中师生之间、同学之间的互动关系,产生教与学之间的共鸣。

  四、我的遗憾

  1、课堂氛围不够浓厚,可能是学生太紧张,我在课前也没有让学生放松心情,课前可以给学生讲笑话或者故事,让学生放松心情,课堂氛围会好一点。

  2、有些引导语不是很贴近学生,有时候学生不会很快回答出来,需要思考的时间,或者后时候不知道怎么回答,这是因为老师的引导语或者提问的表达方式不够恰当。

  3、最后一个小故事与本节所讲的内容联系不是很大,没有用到本节所讲的知识,运用的是平行四边形的不稳定性,对于学生来说,有一定的难度,最后一题的设计不是很合理。

  4、板书字体不够工整,漂亮,还需要多练习,多改进。

  5、课前预设学生把平行四边形转化成长方形的方法有三种,第一种是沿着平行四边形的顶点做的高剪开,通过平移,拼出长方形。第二种是沿着平行四边形中间任意一高剪开,第三种是沿平行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。这节课学生大部分都拼出第一种和第二种,后一种学生没拼出来,如果在下一次试教中,我想尝试着通过我的引导让学生动手实践,剪出第三种剪法。教学是一门有着缺憾的艺术。做为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩。

平行四边形面积的教学反思5

  《平行四边形面积》是五年级上册的内容。教材设计的思路是:先通过数方格的方法数出平行四边形的底、高、面积与长方形的长、宽、面积,再通过对数据的观察,感悟长方形与平行四边形之间的特殊关系,并提出大胆的猜想。通过动手操作验证的方法推导出平行四边形面积的计算方法,再利用所学的公式解决问题。我认为让学生简单记忆公式并不难,难的是让学生理解公式,因此,必须让每个学生亲历知识的形成过程。在独立思索的`基础上亲自动手剪一剪、拼一拼,并带着自己的操作经历进行小组内的讨论和交流。课堂是充满未知的,在课后我认真总结了这节课。

  一、导入环节中的得与失

  得:复习长方形的面积为新知探究做好铺垫。

  失:从复习旧知到情境导入衔接不够自然,略显牵强。

  二、探究新知环节中的得与失

  得:先用数方格得方法探究平行四边形的面积时,处理的较为细致。动手操作时,也让学生提前准备了学具,初步回忆了其特点,充分发挥学生主体性。

  失:在探究环节,不能很好的利用学生的错误资源,来让学生纠其错误,达到巩固新知的效果,在学生说出其变化时引导不到位,导致学生得出平行四边形面积公式有些被动。

  三、巩固练习环节中的得与失

  得:最后一道题设计较好,让学生知道算平行四边形的面积时要选择高与相应的底。

  失:时间安排的原因,处理的过于粗略。

  之后的教学中,备课时,不仅要在备教材这下功夫,也要在备学生这多努力,多预设几种学生可能出现的情况,应该如何应对,做到全面把控课堂。

平行四边形面积的教学反思6

  教学“平行四边形面积的计算”时,一向发踊跃的潘晓迫不及待发说:“平行四边形的面积就是用相邻的两条边相乘。”也有学生大声反驳:“不对,是底乘高。”我没有顺势评判他们的正误,而是让潘说想法。“长方形、正方形都是特殊的平行四边形,长方形和正方形的面积是长乘宽,是相邻的两条边相乘,所以平行四边形也可以用相邻的两条边相乘。”我心里不不由地赞叹:多好的逻辑推理!“这位同学你是怎么想的呢?”“我听妈妈说的。”“他们谁说的有理我们不妨研究一下。”

  学生开始各自的研究……之后,大家汇报研究结果。

  生1:我们画了长方形和平等四边形把它们剪了下来,再把平行四边形拼成了长方形。这样一比,发现长方形的面积大,所以平行四边形面积不能用相邻的两条边相乘。

  生2拼成一个长方形,数这个长方形占的方格数就行了。这个长方形的宽和长分别是平行四边形的高和底。

  生3:我们画了一个平等四边形,和它的高,顺着高剪下一个三角形,把平行四边形重新拼成了一个长方形。新拼成的长方形的长和宽就是平行四边形的底和高,长方形的面积用长乘宽,平行四边形的面积应该用底乘高。

  我们再来看看潘的表现:她拿着一个平行四边形学具走到讲台前:“我开始的想法是错误的,请大家看—”说着,她捏住平行四边形的一组对角,向两边拉,“平行四边形相邻的两条边的长度没变,可是它的面积变小了,所以不能用相邻的两条边相乘来计算平行四边形的面积。我还发现,平行四边形的面积变了,高也就变了,所以面积一定和高有关。”

  有时,我们为了保证课堂教学的.顺利进行,往往启发、示范在前,为学生扫除一切障碍,或者对学生的错误置之不理,生怕“吹皱一池春水”。殊不知,一串串微弱的创造火花就在这小心呵护与视而不见中熄灭了。我们不妨让这可爱的错误“激起千层浪”,这正是创造力爆发前的契机,别错过它,相机诱导,让这思维的火花碰撞、绽放。

  [思考与对策]:

  课堂师生互动过程中出现“非预设生成”的原因是多方面的,但就上述情况,我觉得主要还是老师在教学预设时对学生的学习起点了解不足,只重视应该的状态(学习的逻辑起点),而忽视现实的状态(学习的现实起点),造成教学预设不够充分,以至于对学生非预设的学习生成置若罔闻。如果是这样,就要求教师在今后的教学预设中,加强对学生现实起点的研究,使教学预设更吻合于学生认知能力与学习材料的最佳结合。“非预设生成”虽然会让教师感到有点棘手,但往往也会给师生带来意外的感觉。这种意外往往给学生带来探究的冲动,如果探究活动带来收获,学生就会有积极的情绪表现。因为这种临时探究与被老师预设的探究有完全不同的感受,生命的活力经常在这样的情境中让人感动。

  因此,既然这部分学生对于今天学习的知识已经有所认识,我们何不让他们说说你是怎么知道的呢?通过个人的尝试,我发现让学生们展现他们已有的知识状况,这种知识展现对于他们来说是激动人心的。当他们把自己所掌握的知识告诉同学与老师的时候,他们是在享受,享受学习给自己带来的快乐。并且,他们会以极大的热忱,把自己掌握知识的来龙去脉,尽其所能告诉老师和同学,这既是对自身学习进行再思考的过程,也是给其他同学以激励的过程。而老师的任务,则是根据学生不同的现实起点,抓住本知识内容的核心问题,以问题的形式要求学生继续研究,给予解决。面对问题,不论是起点高或低的学生,都会争先恐后地加入研究的行列,因为他们愿意享受这种因学习而带来的被重视的快乐。

  后六人给我的一个重要的启示是,他们在真正的让学生有实实在在的自主学习的时间,也在配合用多种不同的方式来激发学生自主学习,在培养学生自主学习的方法能力上取得了一定的成绩,自主学习能力的形成不是一日之功。“桥中人,人人有希望,个个须努力,只有拼搏今天,才能拥有灿烂明天。”

平行四边形面积的教学反思7

  《平行四边形的面积》一课,是北师大版数学五年级上册第四单元第三课的内容。在这节课中,我主要讲授的第一课时的内容。在教学中,我通过让学生动手做一做,感受“转化”的思想,进而理解平行四边形的面积计算方法。反思这节课,我总结了成功的经验以及不足之处,具体概括为以下几点:

  优点

  一、注重学生的课前预习工作,让学生做好了学习新知的准备

  在教学前,我先让学生预习《平行四边形的面积》一课。通过预习,学生知道了这节课的学习重点(掌握平行四边形的面积计算方法)。在学习时,每位学生都准备好了学具(平行四边形卡纸、剪刀)。

  二、注重课堂上学生的自主学习,让学生成为学习新知的主人

  在探究平行四边形的`面积计算方法时,我引导学生思考“如何将平行四边形转化成已经学过的图形,再来求面积?”然后组织学生独立操作(剪、拼),进而引导学生思考“拼好后的长方形与原平行四边形有什么关系?”在这些活动中,学生都认认真真地动手剪拼,并在小组内交流各自的想法。每位学生的动手操作能力、语言表达能力、逻辑思维能力都得到充分的锻炼。再组织在全班交流中,学生的语言表达能力、逻辑思维能力又得到了进一步的提高。由此,对平行四边形的面积计算方法的由来也就理解的相当透彻。教学效果很好。

  三、注重多媒体辅助教学设施的应用,让学生在各种新奇的环境下主动学习。

  在课前,我编辑了切合学生心理特征的教学课件。在课堂上,极大的吸引了学生的注意力。使学生纷纷主动地在课件中寻找问题,解决问题。

  不足与相应措施

  学生之间的评价太少,以至于学生看不到自己与他人的差距。在今后的教学中,要优化教学环节,在教学中,适当的组织学生进行生生之间的评价。

平行四边形面积的教学反思8

  《平行四边形的面积》是北师大版五年级上册第四单元第三课时的内容。这在学生已经会在格子图中求出图形的面积,已经认识了平行四边形的底和高,并会找、会画相对应的底和高的基础上进行教学的,基于学生的知识起点和学生的学情分析,我有了本课的教学设计。我追求的是让教学贴着学生的思维前行,让学生在直观操作中学习数学。今天,我有幸将这课的设计在早毓小学展示。现静下心来反思这节课,我总结了一些成功的经验和失败的教训,具体概括为以下几点:

  一、创设贴近学生生活的学习情境,激发学生探究的欲望。

  首先,我对教科书中的主情境加以修改,以贴近学生的生活情景导入,利用课件出现学校操场旁有一块长方形的空地要绿化,请同学们算出绿化的面积,随即从这个长方形中出现一块没有任何数据的平行四边形地,再引导学生将这个平行四边形与长方形比一比,再估测这个平行四边形的面积大约有多少?以培养学生估测意识。

  继而询问学生“有什么办法能比较准确地算出这个平行四边形的面积”。学生根据已有的学习经验马上想到用数格子和计算的的方法。然后围绕“有什么办法能比较准确算出这个平行四边形的面积?”组织学生动手探究。这样既复习了旧有知识,又为学习新知识做铺垫,同时也比较自然地引入新内容。

  二、注重“以生为主,教师为辅”,让学生真正成为学习的主人。

  1.《新课程标准》明确指出:“有效地数学学习活动不能单纯依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”动手实践是学生学习数学的主要方式之一。它有利于让学生参与知识的形成过程,促进学生对抽象数学知识的理解,而且培养了学生的思维能力、创新能力和合作精神。因此,在本课的教学设计中,我利用学生好动、好奇的心理,将这块平行四边形做成卡片模型,并提供了一些探究的材料和工具。让学生根据自己的学习经验,自主选用喜欢的方法来验证自己的猜想。为学生创造了一个观察、操作的机会,以充分发挥学生的学习主动性,学生在兴趣盎然的操作中,把抽象的数学知识变为活生生的的动作,自然而然的让学生从“要我学”变成“我要学”。有的学生根据自己的学习经验想到了数格子的方法;能力较好的学生很自然的想到把平行四边形转化成长方形,再来探究它们之间的关系。

  2.“学生是学习的主人,把课堂的时间交还给学习的主人”这是新课标在提倡的重点。是的,学生学习,教师是不能替代的,只有让学生在动手操作和交流地碰撞中。学生才能真正理解和掌握这种抽象的公式。因此,在展示学生的活动方法时,我有意识地先展示数格子的方法,当学生介绍完数法后,有的学生马上发现,先移后数的方法更快的得到这个平行四边形的面积,其实,在这里,学生已初步体验的“剪”和“拼”方法了。所以我紧接着展示学生的剪拼法。在学生的汇报中,我大胆放手,让学生根据自己的学习经验进行汇报,充分发挥学生的想象力,同时培养学生的创新意识。

  三、注重数学思想方法的渗透,让所积累的经验为新知服务。

  “授人以鱼,不如授人以渔”,这句话不错,教给他们知识,不如教给他们学习的方法。所以,在“平行四边形的面积”这一课的教学中,我不仅仅是让学生掌握平行四边形面积的计算公式,更重要的是让学生在活动中积累基本的活动经验,让他们在经验的积累中感受、理解、掌握数学中“转化”的思想方法,为今后学习其他图形的`面积奠定基础。如在学生上台汇报:将平行四边形转变成长方形时,我适时讲解“像他们这样,把没学过的知识变成已学过的知识,从而解决问题,这就是数学中的“转化”思想。并提醒学生,在今后的学习中,我们也可以像他们这样,利用转化的的思想,将没学过的知识转化为已学过的知识来解决。

  四、巧设课堂练习,培养学生数学思考的能力。

  学生的思考能力是有差异的,所以我在整体把握教学内容的基础上,设计了梯度练习。首先是基础性的练习,让学生利用所探究出来的公式求平行四边形的面积;接着是提高性的练习,既设计多余信息的练习,让学生的思考力得以生长。当学生看懂了平行四边形可以转化为长方形来思考,真正理解了“底乘高的原理时,我又创设一个反例练习,既在黑板上将一个活动的长方形框架拉成平行四边形,然后问学生:“长方形的面积和平行四边形的面积相等吗?”这时,学生受思维定势的影响,都一致认为“相等”。当我利用课件展示两个图形的平面图时,一部分学生根据已有的学习经验(即将平行四边形右边斜出的部分剪下,平移到左边拼成长方形,)而改变了意见。此时,我质疑学生:“为什么刚才把平行四边形转化成长方形,它们的面积相等。而现在把长方形的框架拉成平行四边形时,它们的面积却不相等呢?”然后再利用活动框架让学生直观地了解到:当我们把长方形框架拉成拉成平行四边形时,它的面积会越来越小,是因为平行四边形的高越来越短的关系。从而让学生理解“等积变形”的转化与“变与不变”之间的区别。最后我再通过两题判断题让学生充分理解,平行四边形的面积不仅与它的高有着密切关系,同时也与它的底有着密切的关系。

  五、遗憾与心得

  教学是一门有着缺憾的艺术。做为教者的我们,往往在执教后,都会留下或多或少的遗憾。

  (1)由于是送课下乡的活动,我对该班学生的学习情况了解不够。因而在学生的动手探究时,多数学生对学习记录卡的填写不熟悉。由此在这个环节花掉的时间超过我预设时间近十分钟。然而让我欣喜的是在学生交流汇报的环节,一部分学生的思维活跃,语言表达能力非常好,从而凸显出本课设计的精彩之处,以致于让听课老师不会因超时而不耐烦。同时也让我意识到,在今后的教学中,应对学习卡的设计慎之又慎。

  (2)阶段性小结的重要性。适当的课堂小结可以帮助学生理清知识结构,掌握内在联系,对促进学生构建自己的知识体系,有很大的帮助。因此,在学生获取一个新的知识点后,教师应及时做个阶段性的小结。

  幸运的我,相信在陈宏瑜名师的指导下,在我们团队的磨课中,会不断地改进,不断地进步,不断地创新,我们的课堂也将会更加精彩。

平行四边形面积的教学反思9

  《平行四边形面积》的教学目标是通过操作活动,经理推导平行四边形的面积计算公式的过程,能运用平行四边形面积公式计算相关图形的面积并解决一些实际的问题。

  教材是直接出示一块平行四边形的空地,要求计算面积,这样安排的目的是让学生面对一个新的问题,思考如何解决新问题。教材这样的安排对学生来讲,提供了很好培养学生独自思考能力的素材,但对学生的要求较高,鉴于本班的学生情况,可能有一部分中下层生没能参与其中,于是我灵活地进行了基于本班实际情况的教学设计,我是这样设计的:

  1、先出示两个不规则图形,要求学生说出面积。这两个不规则图形学生在前面的课里已经学习过,可以通过数格子的方法去计算面积,也可以转化为规则图形去计算的,课堂上不少学生就是用转化的`方法去解决的,这就为新课埋下伏笔。

  2、上一环节不规则图形转化后为正方形和长方形,这里就复习下正方形和长方形面积公式。

  3、比较等底等高的平行四边形和长方形面积谁大?通过图形出示。学生讨论得出结论:可以把平行四边形转化成长方形,这样就可以用底X高得出面积。

  4、补充其他转化策略,明确平行四边形面积=底X高。

  5、练习巩固。

  先出示不规则图形让学生想到转化为熟悉的规则图形进行计算面积,就是课堂里要求掌握的“转化思想”,有了课始的铺垫,后面的探索活动是顺理成章的,其中的道理学生也是清楚的,包括中下层生也能掌握,改变了以往直接出示公式,让学生套公式进行计算来得科学符合学习规律。

平行四边形面积的教学反思10

  《平行四边形的面积》这一课是在学生掌握了平行四边形、三角形、梯形这些图形的特征以及长方形、正方形面积计算的基础上,以未知向已知转化为基本方法开展学习的。通过本节课的学习要使学生掌握平行四边形的面积公式,能准确计算平行四边形的面积。通过数、剪、拼等动手操作活动,探索平行四边形面积计算公式的推导过程,渗透转化的数学思想,发展学生的空间观念。在解决实际问题的过程中,感受数学与生活的联系,培养学生的.数学应用意识。于是,我尝试放手让学生自主探索发现平行四边形面积的计算。

  通过工作室专家们的鼓励与指导,通过反思,我将坚定朝着以下几个方面努力。

  一、注重师生互动、生生互动。最好的教学是最适合学生发展的教学,了解学生、研究学生、分析学生、激励学生,是教师永远的工作,帮助他们在自主探索的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,同时获得广泛的数学活动经验。互动是一种师生之间双向沟通的教学方法,就是把教学活动看作是师生之间进行的一种真诚,和谐的交往沟通。通过优化“师生互动”的方式,即可以调节师生关系及其相互作用,形成和谐的师生互动、生生互动,学习个体与教学中介的互动,更能提升学生人际交往能力强化人与社会的相互影响;还可以产生教学共振,让教学效果达到潜移默化的提高。

  二、注重语言的变化,学会放手。在课堂中,教师的一个表情、一个动作、一个手势可以改变很多,可以控制或调节课堂气氛节奏,增强教学效果,还可以促进师生间、生生间的情感交流。在本节课中我没有完全放开,语言、动作、课堂,今后也要加强自身的学习增强数学素养。在课堂当中也要学会放手,我们工作室古主任一直强调“三让”让出讲台、让出话筒、让出黑板,就是要让学生多说,让出课堂,多让孩子发言,自主发言,充分发挥学生的主体作用。练习要有梯度性,提升学生的数学思维能力。

  三、关注学生个体,注重融错教学。培养学生的数感,注重学生应用题的解决能力。落实三维目标,关注全体学生,用好课本,认认真真钻研教师用书等教参。当堂巩固,收集学生的信息。学生完成的怎么样?要有所了解,教师心里要有数。特别是对于学生做错了的题多去反思,思考,鼓励学生积极地去探索,深化他们对数学知识的理解,发展学生的反思力,培育学生直面错误、纠正错误的勇气与习惯,让课堂因融错而精彩!

  四、体现先学后教,感受数学之美。教育就是一个灵魂唤醒另一个灵魂,在今后课堂教学中,抓住主线。注重预习“先学后教”培养好学生的学习习惯,并持之以恒的抓下去。沉下心认真思考,让孩子们在玩中学、乐中学,让孩子们在获取知识、形成技能的同时感受数学的美,学生爱上了数学这门学科。

  “路漫漫其修远兮,吾将上下而求索”,在今后探索的路上,不忘初心,诠释潜心育人内涵。

平行四边形面积的教学反思11

  由于暑假在家,我就备了这一课。所以一开始我的教学目标还是很明确的:

  ①借助学生已有的经验和方格图,让学生初步感知平行四边形的面积可能与它的底和对应高有关,再通过剪、拼进一步确定平行四边形的面积计算公式,并能根据公式正确计算平行四边形的面积。

  ②在操作、观察、比较的过程中,渗透转化的思想, 发展学生的空间观念,使学生获得探索图形内容的基本方法和基本经验。

  开始,先复习长方形面积的计算方法和长方形公式的由来,让学生实现知识的迁移。本课的重点就在于将平行四边形转化成长方形,进而推导出平行四边形面积的'计算公式。在比较长方形和平行四边形两个图形这一教学环节中,给足学生数方格的时间,突出怎样去数方格(先数满格,不满一格的视为半格,为什么?)为以后学习不规则图形面积埋下伏笔。还有一种数法,将图形的沿高切下,平移,使学生发现多出的三角形与缺的三角形大小相等,如果剪下来平移到缺的地方可以转化成长方形,有了这样的感悟,然后放手让学生将自己准备的平行四边形通过剪拼转化成长方形,这样将操作、理解、表述有机地结合起来,学生有非常直观的“转化”感受。将平行四边形转化成学生学过的长方形来计算它们的面积,这时进行适时的小结:探索图形的面积公式,我们可以把没学过的图形转化为已经学的图形来研究。学生比较容易掌握把新的、陌生的问题转化成学生相对熟悉的问题的方法。我们可以将数学方法传递给学生,这样有利于学生主动探索解决问题的方法,体会解决问题的策略,提高数学的应用意识。

平行四边形面积的教学反思12

  20xx年10月24日,我参加了经开区数学基本功比赛,执教《平行四边形的面积》这节课,实施教学后一些问题让我陷入思考。下面从我备课及执教的经历谈起。

  首先,对于内容的分析,我在教学设计中已经阐明,因此不再赘述。对于学情,我以本校五年级学生为参照,调研了本校学生对此知识的想法,根据学生问卷的回答情况发现了这样的问题:

  1、长方形的面积公式学生基本都能写对,但出现与算周长混淆的情况,并且已经想不起来长方形的面积是由数方格推导出来的。

  2、求平行四边形的面积时出现这样几类情况。

  (1)用算周长的方法计算,占15%;

  (2)用邻边相乘的方法计算,占35%;

  (3)知道转化成长方形,但不能正确计算,占23%;

  (4)其他(包括不知道怎么算),占27%。

  虽然我深知读懂教材、读懂学生的重要性,但理解有限,在设计与执教过程中,反映出以下三个问题。

  一、学情分析能力不足

  我虽然进行了学情分析,但由于自己的理解有限,我没有分析到其实学生对于找原来的平行四边形与转化后的长方形之间的等量关系其实是不理解的,是一个难点,导致我以如何向学生渗透转化思想为重心了。

  二、课堂调控能力有限

  在实施教学的`时候由于学生的学情不同,执教班级学生基本已经知道平行四边形的面积等于底乘高,加之我的现场调控能力有限,因此并不能顺着学生的思维进行教学,跟我设计的初衷产生了水土不服的现象,但后来我仔细回想了执教过程中的一些学生表现,优等生知道公式,并不代表所有学生都知道,应该具备一些调控能力让所有学生经历验证的过程,但错过了,这一点也说明我的课堂调控能力是需要加强的。

  另外一个问题是找等量关系时,我由于时间的限制,代替了学生的观察发现,带领学生直接演示了原来的平行四边形与转化后的长方形之间的关系,推导出了公式,这点挺遗憾的。

  三、数学语言不严谨

  在此次教学中,我的数学语言不够严谨,比如数学上专业的术语“平移”等说得不规范。

  针对以上问题我想教师的调控能力这些非一日之功,在以后的课堂教学中我会尽量注意记录自己的问题与语言,不断反思,从而慢慢提高,增强自己上现场课的经验。

  对《平行四边形的面积》的设计,我没实现的是,找等量关系过程对学生是一个难点,我对突破这个难点的想法如下。

  预设教学片段:

  师:同学们,把我们的长方形还原为平行四边形,你能标出平行四边形的底和对应的高吗?请同学们动手标一标吧。

  师:同学们,把平行四边形转化成长方形,你能找出原来的平行四边形和转化后的长方形有哪些相等的关系吗?小组讨论并相互说说你的发现。

  当然,这是我的初步想法还没有进行实际教学,因此不知道这些能不能突破难点。

  通过本次讲课,让我真正乐趣无穷的是对课不断地思考,发现课的奥妙,有遗憾,有困惑、有思考……我想这些都是成长,教学时间那么长,我想读懂教材,读懂学生,这不容易的事总会慢慢理清,然后,不断成长!

平行四边形面积的教学反思13

  教材分析

  平行四边形、三角形和梯形面积计算是在学生掌握了这些图形特征以及长方形、正方形面积计算的基础

  上学习的,它们是学生进一步学习圆面积和立体图形表面积的基础。

  本节课通过提出解决比较两个花坛(一个长方形,一个正方形)面积的问题,让学生带着问题自主探索计算平行四边形面积的基本方法,并能运用计算平行四边形面积的方法解决一些实际问题。

  学情分析

  本节课是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上学习的,让学生自己通过

  探索,平移,得出平行四边形面积的计算公式,并会应用公式解决实际问题。

  五年级学生已具备一定的独立思考、探究的能力,我为了充分发挥学生的`主体作用,让学生动手操作,观察比较,鼓励学生积极主动地获取新知,促进知识的迁移,通过自己探究得出面积公式,从而培养了学生的空间观念,发展了学生的推理能力。

  教学目标

  1、 知识与技能:

  (1) 使学生通过实际操作和讨论思考,探索并掌握平行四边形的面积计算公式,并能应用公式正确计算平行四边形的面积。

  (2) 能应用平行四边形的面积计算公式解决相应的实际问题。

  2、 过程与方法

  使学生经历观察、操作、测量、填表、讨论、分析、比较、归纳等数学活动过程,体会“等积变形”的思想方法,培养空间观念,发展初步的推理能力。

  3、 情感、态度与价值观观:

  (1) 渗透转化的数学思想方法。

  (2) 使学生在探索平行四边形面积的计算方法中,获得成功的体验,形成积极的数学学习情感。

  教学重点和难点

  教学重点:探索并掌握平行四边形面积的计算公式。

  教学难点:理解平行四边形面积计算公式的推导过程,并能正确应用平行四边形面积计算公式解决相应的实际问题。

  教学过程:

  (一)、创设情境,引入课题。

  1、提出问题

  多媒体出示教科书第80页长方形、平行四边形花坛图。

  师:请大家观察图中的两个花坛,谁能说一说这两个花坛都是什么形状?你会计算它们的面积吗?

  指名回答,引导学生说一说长方形面积的计算公式。

  2、引入课题:长方形的面积我们会计算了,这节课我们一起来研究平行四边形面积的计算方法。

  板书课题:平行四边形的面积

  (二)、探索新知

  1、学习用数方格的方法计算平行四边形的面积。

  多媒体出示课本第80页方格图。

  (1)指出

  我们已经知道可以用数方格的方法得到一个图形的面积,现在请同学们用数方格法算出这个平行四边形的面积。图中一个方格表示1平方厘米,不满一格都按半格计算。把数出的结果填在表格中(课本第80页表格)。

  (2)学生操作

  让学生根据上面的要求独立数一数,数完后与同桌交流,并把数的结果填在课本第80页的表格中。师巡视指导。

  (3)汇报交流

平行四边形面积的教学反思14

  小学数学关于几何知识的安排,是按由易到难的顺序进行的。本册教材承担着让学生学会平行四边形、三角形、梯形面积计算的任务。平行四边形面积的计算,是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上,进行教学的。本节课主要让学生初步运用转化的方法推导出平行四边形面积公式,把平行四边形转化成为长方形,并分析长方形面积与平行四边形面积的关系,再从长方形的面积计算公式推出平行四边形的面积计算公式,然后通过实例验证,使学生理解平行四边形面积计算公式的推导过程,在理解的基础上掌握公式。同时也有利于学生知道推导方法,为三角形、梯形的面积公式推导做准备。

  本课关键是平行四边形与长方形的等积转化问题的理解,通过“剪、移、拼”找出平行四边形底和高与长方形长和宽的关系,及面积始终不变的特点,归纳出平行四边形等积转化成长方形。

  心理学家皮亚杰指出:“活动是认知的基础,智慧从动作开始”。动手操作过程是学生学习的一种循序渐进的探索过程。所以,我主要采用了动手操作,自主探索,合作交流的学习方式,通过课件演示和实践操作,以激发学生的学习兴趣,调动学生的学习积极性。通过学生动手操作、观察、实验得出结论,体现了教学以学生为主体、老师为主导的教学原则。

  我让学生动手操作,想办法将平行四边形转化为长方形。操作之后进行汇报,交流自己的验证过程。汇报的时候,剪拼的方法有好多种,在这时,我及时抛给学生这样一个问题:“为什么要沿高剪开?”引发学生积极开动脑筋思考。然后我又引导学生观察这两个图形并比较,进而讨论:拼出的长方形与原来平行四边形什么变了,什么没变?拼成长方形的长和宽与原来平行四边形的底和高有什么联系?通过上面问题的思考,学生对平行四边形公式的推导有了更深的认识,这时我顺势引导学生得出推导过程:将一个平行四边形通过剪、拼后转化为一个长方形,拼成的长方形的长相当于原来平行四边形的底,拼成的长方形的宽相当于原来平行四边形的高,平行四边形的面积就等于长方形的面积,因为长方形的面积=长×宽,所以平行四边形的`面积=底×高。接着我让学生同桌互相说一说整个操作过程,使学生真正理解平行四边形转化成长方形的过程。

  对于新知需要及时组织学生巩固运用,才能得到理解与内化。我本着“重基础、验能力、拓思维”的原则,设计四个层次的练习题:

  第一层:基本练习:书本P82第1题

  有利于学生加深对图形的认识,正确分清平行四边形底和高的关系。

  第二层:综合练习:

  1、你能想办法求出下面两个平行四边形的面积吗?要求这两个平行四边形的面积必须先干什么?

  让学生自己动手作高,并量出平行四边形的底和高,再计算面积,这个过程也体现了“重实践”这一理念。

  2、你会求出这个平行四边形的面积吗?

  通过不同的高引起学生的混淆,在计算中让学生明确在计算平行四边形面积时底要找出与它相对应的高,这样才能准确求出平行四边形的面积。并且根据已求的面积和另一条高,求出与这条高相对应的底。

  第三层:扩展练习:

  1、下面这两个平行四边形的面积相等吗?为什么?你还能在这里画出与这两个面积相等的平行四边形吗?可以画几个?(图在课件中)

  学生综合运用知识,进行逻辑推理,明白平行四边形的面积只与底和高有关,等底同高的平行四边形的面积相等。

  整个习题设计部分,虽然题量不大,但却涵盖了本节课的所有知识点,题目呈现方式的多样,吸引了学生的注意力,使学生面对挑战充满信心,激发了学生兴趣、引发了思考、发展了思维。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的能力。

  教学是一门永远有遗憾的艺术,虽然我也很努力地想上好这节课,但在教学中存在着很多问题,以下是我今后需要改进的地方:

  数学课不仅要教给学生知识,回顾数学更应该带给孩子数学思想方法,本节课有两个重要的思想,第一、平移的数学思想。在本节课中没有体现出来。第二、本节课最重要的思想方法,“转化”突出的还不够,也就是说学生没有真正体会到这种思想的重要性。

  前面的环节太耽误时间,今后要想办法优化,不仅是本节课,所有课都应该这样做,课堂上每一个环节的设置都要围绕核心目标,对核心目标重要性不大的都要舍掉,以保证核心目标在课堂上的黄金时间解决。

  通过教学发现,练习设置要根据学生的学习情况和知识的掌握情况进行,不宜拔高,本课应以基本练习巩固为主。

平行四边形面积的教学反思15

  平行四边形面积的计算是在学生学习了长方形的面积和平行四边形认识的基础上教学的,平行四边形的面积公式推导方法的掌握,对学习后面三角形、梯形面积公式具有重要的作用,所有平行四边形面积公式的推导,是本节课的重点。教学中通过把一个可拉动长方形铁框拉成一个平行四边形,使学生看到长方形和平行四边形之间的内在联系,为后面学习新知识打下基础。新课突出了三个环节,一是引导学生初步探究,通过提出一个客观的实际问题,如果有一块很大很大的平行四边形草地,还能用数方格的方法计算它的面积吗?小组讨论。用问题激起学生再次探究,可以把要探究的平行四边形转化成我们学过的什么图形呢?二通过学生实际操作,用不同方法把平行四边形转化成长方形,并通过操作,观察,找出平行四边形与所拼的长方形的内在联系,在此基础上,推导出平行四边形的面积计算公式。三是引导学生会用公式正确计算平行四边形面积,解决实际问题,在练习中,一定要做到一练一小结,提醒学生要注意的问题。

  平行四边形的面积公式是几何图形面积计算第一次运用“转化”思想方法推导得出的。因此,本节课让学生形象直观地明白什么是“转化”,深刻理解“转化”的本质,就显得尤为重要。对于“转化”思想,本节课不在是渗透的朦朦胧胧,而是把这种学习方法明朗化,让“转化”本领成为学生思维的“主角”,并当作学习的一个重点让学生掌握。我首先出示三个图形让学生通过比较,在直观的基础上,利用图形的转化,直接说出了它们的面积,渗透了转化的'数学思想方法。这样,学生面对“计算平行四边形面积”这一新问题,就很自然地得到了两种猜想:用平行四边形相邻两边相乘(以前学习的长方形面积计算公式等知识的负迁移)和用平行四边形的底乘以高(转化思想方法的运用)。进而,教师提出问题:同一个平行四边形的面积怎么会有两个答案呢?激发学生进一步去探究。迫使学生动脑筋想办法,用割补方法进行问题转化,验证了用“底乘高”的猜测是正确的,通过观察图形的动态变化,从比较中发现用“相邻两边相乘”是错误的。学生在这一实践活动过程中获得割补转化的数学思想方法。在练习阶段的“你会求阴影部分的面积吗?”,不仅是巩固新知,而是将“转化”本领内化成解题技巧。

  这节课,采用先让学生“大胆猜测”,再进行“小心求证”的教学思路,教师有意识地把经历“猜想与验证”蕴涵在探究平行四边形面积公式的数学活动中。当学生对平行四边形的面积计算获得两个合理的猜想后,教师不做否定,而是要求学生对自己的想法进行检验,学生通过思维顿悟、教师的直观演示,自己发现错误的原因,这不但让学生对知识理解更透彻,影响更深刻,而且给学生学生探究发现知识的方法指导。这样的过程,既不同于由一般到特殊的演绎过程,也有别于由具体到一般的归纳过程。它是一种发现并填补认知的空隙,即定向探索解决问题的研究过程,这符合数学知识发现的一般规律,因而具有比较一般的方法论意义。这样的数学思维方法的运用,有效地训练了学生综合运用思维方法获取知识的能力,同时也受到了科学思想方法的启蒙。