圆柱的体积教学反思
作为一位优秀的老师,我们要有一流的教学能力,我们可以把教学过程中的感悟记录在教学反思中,我们该怎么去写教学反思呢?下面是小编为大家收集的圆柱的体积教学反思,希望能够帮助到大家。
圆柱的体积教学反思1
本课主要内容是圆柱的体积公式的推导及其应用。因为公式的推导过程是个难点,因此在教学设计时,我让学生自己动手实践、自主探索与合作交流,在实践中体验,帮助学生理解公式的来源,从而获得知识。下面我来谈谈自己的一些反思。
1、导入时,力求突破教材,有所创新
圆柱的体积的导入,课本是先让学生回忆“长方体、正方体的体积都可以用它们的底面积乘高来计算”,再接着马上提问:“圆柱的体积怎样计算呢?”让学生们猜一猜。猜想计算方法固然有好处,但要让学生马上做实验理解圆柱体积计算公式的推导过程,我觉得这样教学引入,学生的思维跳跃得太快,衔接性不强,不利于学生理解和掌握实验的用意,课堂效果就会明显不佳。于是我设计时在回忆了长方体、正方体体积计算方法之后,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想,并能更好地联系旧知,思维过度自然、流畅,便于学生的思维走向正确的方向,这时教师的引导才是行之有效的。不过应该注意时间的控制,不能花费太多的时间。
2、新课时,要实现人人参与,主动学习
学生进行数学探究时,应给予充分的思考空间,创设实践操作的条件,营造出思考的环境氛围。在推导圆柱体积公式过程时,因为学校没有提供学具,所以我只能先让学生展开空间想象,结合圆面积的推导过程,借助课件一一展示推导过程。让学生观察发现把圆柱的底面分成若干份(例如,分成16等份),然后把圆柱切开,圆柱体就转化成一个近似的长方体;接着让学生小组交流长方体的长和宽与圆柱的`各部分有什么关系?圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。这样学生亲身参与操作,有了空间感觉的体验,也有了充分的思考空间。
3、练习时,形式多样,层层递进
例题的题目都比较浅显,学生还能容易掌握,但遇到多转几个弯的题目就束手无策了。所以,为了让学生能熟练地掌握计算圆柱的体积,我在设计练习时考虑怎样才能让学生用最短的时间完成不同类型的题目。
(1)、已知圆柱底面积(s)和高(h),计算圆柱体积可以应用这一公式:V=sh。
(2)、已知圆柱底面半径(r)和高(h),计算圆柱体积可以应用这一公式:V=πr2h。
(3)、已知圆柱底面直径(d)和高(h),计算圆柱体积可以应用这一公式:V=π(d/2) 2h。
(4)、已知圆柱底面周长(c)和高(h),计算圆柱体积可以应用这一公式:V=π(c÷π÷2) 2h。
(5)、已知圆柱侧面积(s侧)和高(h),计算圆柱体积可以应用这一公式:V=π(s侧÷h÷π÷2) 2h。
因为是第一课时所以在巩固练习中,只要从前四种类型去考虑,做到面面俱到,逐层深入,由易到难,使学生真正掌握好计算圆柱体积的方法。另外,还设计了解决生活中的问题,让学生能学以致用解决生活中的问题。不足之处
本想给学生准备学具,亲自动手操作圆柱体体积的推导过程,无奈学校没有学具,所以只能让孩子借助圆面积的推导过程展开想象,然后借助课件展示圆柱体积的推导过程,可能对一些学困生的理解还有困难。
圆柱的体积教学反思2
《圆柱的体积》是在学生已经学会计算长方体、正方体的体积,并且掌握圆柱基本特征的基础上,引导学生探索并掌握圆柱的体积公式。通过教材教学学习后,下面我从教学过程、教学策略、教学技能等方面谈谈自己的一些反思。
一、在教学过程的设计方面
1、导入时,力求突破教材,有所创新
圆柱的体积的导入,课本是先让学生回忆“长方体、正方体的体积都可以用它们的底面积乘高来计算”,再接着马上提问:“圆柱的体积怎样计算呢?”让学生们猜一猜。猜想计算方法固然有好处,但要让学生马上做实验理解圆柱体积计算公式的推导过程,我觉得这样教学引入,学生的思维跳跃得太快,衔接性不强,不利于学生理解和掌握实验的用意,课堂效果就会明显不佳。于是我设计时不妨在回忆了长方体、正方体体积计算方法之后,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想,并能更好地联系旧知,思维过度自然、流畅,便于学生的思维走向正确的方向,这时教师的引导才是行之有效的。不过应该注意时间的控制,不能花费太多的时间。
2、新课时,要实现人人参与,主动学习
学生进行数学探究时,应给予充分的思考空间,创设实践操作的条件,营造出思考的环境氛围。在推导圆柱体积公式过程时,我让学生经历先想—观察—动手操作的过程。把圆柱的底面分成若干份(例如,分成16等份),然后把圆柱切开,照课本上的图拼起来,圆柱体就转化成一个近似的长方体;接着让学生小组交流长方体的长和宽与圆柱的各部分有什么关系?圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。这样学生亲身参与操作,有了空间感觉的体验,,也有了充分的思考空间。这样设计我觉得能突破难点,课堂效果很好。
3、练习时,形式多样,层层递进
例题“练一练”中的题目都比较浅显,学生还能容易掌握,但遇到多转几个弯的题目就束手无策了。所以,为了让学生能熟练地掌握计算圆柱的体积,我在设计练习时动了一番脑,花心思去考虑怎样才能让学生用最短的时间完成不同类型的题目。通过反思,我概括出五种类型: a。已知圆柱底面积(s)和高(h),计算圆柱体积可以应用这一公式:V=sh。
b。已知圆柱底面半径(r)和高(h),计算圆柱体积可以应用这一公式:V=πr2h。
c。已知圆柱底面直径(d)和高(h),计算圆柱体积可以应用这一公式:V=π(d/2)2h。
d。已知圆柱底面周长(c)和高(h),计算圆柱体积可以应用这一公式:V=π(c÷π÷2)2h。
e。已知圆柱侧面积(s侧)和高(h),计算圆柱体积可以应用这一公式:V=π(s侧÷h÷π÷2)2h。
因为是第一课时所以在巩固练习中,只要从前四种类型去考虑,做到面面俱到,逐层深入,由易到难,使学生真正掌握好计算圆柱体积的方法另外,还设计了解决生活中的问题,让学生能学以致用解决生活中的问题。
二、在教学策略方面
我采用多媒体的直观教具相结合的手段,在圆柱体积公式推导过程中指导学生充分利用手中的学具、教具,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流、总结归纳等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。而在巩固练习这一环节,我用多媒体发挥它大容量、节省时间的优点。
三、在教学技能方面
学生通过实践、探索、发现,得到的'知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是学生在自己艰苦的学习过程中发现并从学生的口里说出来的,这样的知识具有个人意义,理解更深刻。但是我觉得这个引导的过程需要教师有认真准备,随时能解决课堂上可能出现的一些问题。传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而我在本课创设了丰富的教学情景。
四、教学要达到三个目的
一是认识等底等高的含义,便于判断圆柱可以转化成与它等底等高的长方体。
二是从长方体与正方体等底等高,体积也相等的事实,引发等底等高的圆柱与长方体的体积也相等的猜想,形成把圆柱转化成长方体的活动心向。
三是复习长方体、正方体的体积公式,圆柱的体积最终也要这样计算。
圆柱的体积教学反思3
今天第一节课荆校长和建英听了我讲的《圆柱的体积》,提出了几点我应该注意和改进的地方。
一是,要注重课前的预习,圆柱的体积一课复习旧知环节,需要学生回顾什么是体积,长方体正方体体积公式,回顾转化的方法推导圆面积计算公式,需要回顾的旧知较多,所以可以课前设计成几个问题让学生预习,就可以避免课上学生由于对知识的遗忘,而浪费时间,影响课堂的.高效。
二是,猜想圆柱的体积可能与什么有关这个环节,由于注重让学生猜想,感受,体验,并通过媒体演示验证猜想的正确性,有些浪费时间。
三是,推导体积公式环节,我让学生利用拆好的圆柱学具,两人合作,围绕三个问题进行探究“圆柱可以转化为我们学过的哪个立体图形,转化后的图形与圆柱之间有怎样的关系,利用这样的关系可以推导出怎样的公式”,学生合作的成果需要通过语言表达出来,所以之后的展示汇报环节,我叫了三个学生上台按照提示的三个问题完整的表述,最后有全体齐说,没有让学生再互相说一说,在说中再去感受推导的过程,我觉得这也是我欠缺的地方。
四是,练习反馈环节,我依据学生推导出的四个公式,先让学生看着这些公式说一说,求圆柱的体积需要知道什么条件,学生说出了四种情况:知道了半径和高求体积;知道了周长和高求体积;知道了底面积和高求体积;知道了直径和高求体积。我顺势出了四道这样的练习题让学生在本上完成并集体订正,感觉练习的量不够。
通过这节课,从荆校长和建英的评课中,我体会到要想提高课堂效率,首先,抓好课前预习,其次,注重用多种方式让学生多说而且要说透,最后,注意各环节时间分配要合理,做到心中有数。还有就是要加大练习量,关注到每一个学生,对学生学习效果掌握程度做到了如指掌。
圆柱的体积教学反思4
《圆柱的体积》以前教学此内容时,由于没有相应的教具,往往直接告诉学生:圆柱的体积=底面积×高,用字母表示公式:V=SH,让学生套公式练习;这学期我教本节课内容时,课前作了充分准备了教具,再加之网上收集整理出来相应的教学课件,课堂教学我让学生自己动手实践、自主探索与合作交流,让学生实践中体验,从而获得知识。总之让学生的手、脑、嘴、眼各种器官充分利用起来,让学生不仅学到知识,而且让学生体验学习的过程,真正理解圆柱体积的推导过程,让学生真正成为学习的主人。对此,我有以下的感想
一、学生学到了有价值的知识。
学生通过实践、探索、发现,得到的'知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是我告诉的,而是学生在自己艰苦的学习中发现并从学生的口里说出来的,这样的知识具有个人意义,理解更深刻。这样学生不但尝到了知识,更重要的是他们掌握了学习数学的方法,这样有利于孩子将来的发展。
二、培养了学生的科学精神和方法。
新课程改革明确提出要“强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神”。学生动手实践、观察得出结论的过程,就是科学研究的过程。本节课我让学生联系圆的面积推导的基础上,让学生自主探究圆柱的体积的推导过程。充分体现了这一理念。
三、促进了学生的思维发展。
传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而我在本课创设了丰富的教学情景,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。
圆柱的体积教学反思5
一、让操作更详实,留下思考的痕迹
《数学课程标准》指出:动手实践、自主探索、合作交流是学生学习数学的重要方式。组织学生在实践操作中探究发现规律,可以充分调动学生的各种感官,从感性到理性,从实践到认识,从具体到抽象,引导学生积极动手动脑、概括分析、抽象推理等,这不仅有利于学生思维的发展,而且也可以加深学生对数学知识的理解和掌握。尤其是对于几何知识的学习,课堂教学中的动手操作就显得更加重要。
在探索圆柱体积计算方法的时候,教师试图让学生结合圆面积计算的探索方法,能联想到可以把,圆柱的体积转化成已知的立体图形的体积。但这种方法似乎在学生的印象中并不深刻,因此学生在探索的一开始,学生就遇到了思考的困惑,对他后面的探索造成了很大的影响。在教师的印象中圆面积的计算公式推导应该是我们花了很多时间去让学生操作的,但是操作的效果却如此之差。我们不妨反问自己一下,究竟自己在教学的时候是否用好了学生的操作,让学生对操作的过程有深刻的体会与认识,在操作中是否激起了学生的思考。
当学生想到了探索方法后,却因为一些客观的原因,没有能够让学生亲自去套作一番,光是看课件、看其他同学的操作,对于大部分学生来说,印象是不够深刻的,体会也是不到位的。毕竟这部分内容的学习对与学生来说也是有一定困难的,虽然是六年级的同学,但他们的空间想象能力还是不够的,需要实打实的操作,让他们有个直观的认识。
所以我认为我们的课堂上应放手让学生去操作,用直观的操作,留下自己思考的痕迹,为进一步探索知识做好准备。
二、让观察更细致,寻找知识的联系
数学观察力,是新课标中对提出学生应必备的一种重要数学能力。学生在操作的基础上要学会观察,挖掘知识之间的联系,真正体现操作的价值。
在圆柱的体积的教学中,教师让学生去发现圆柱体与通过切割后形成的长方体之间的联系时,不少学生都一时摸不着头脑。这时,教师不妨给孩子一些观察的提示,如:“拼成的长方体的底面积与原来圆柱的底面积有什么关系?为什么是相等的?”“拼成的长方体的高与原来圆柱的高有什么关系?为什么是相等的?”通过学生直观的观察,让学生去挖掘数学本质上的一些联系,让学生在知识的探索过程中有一个完成的体验过程,也对所学的知识有一个更好的理解。
观察是智慧的源泉,让学生学会从变化的角度去观察,发现知识之间的联系,这也是一种令学生终身受益的学习方法。
三、让探索更深入,渴求方法的掌握
通过操作与观察,可以说学生积累了一定的认知经验,这种经验我想不应该只停留在一节课、一个内容的学习中,可以延伸到很多知识的学习中去,从而形成一定的学习方法。就如在圆柱的体积的`学习中,圆柱体转化成已经学过的长方体的体积来探究的这种方法在之前学生已经接触过,如:圆面积的计算方法、平行四边形的面积计算方法,我们都是通过将未知的图形转化成已知图形来探索面积计算的方法。如果我们在教学的过程中能够很好地重视学生的操作经验积累,并形成一定的方法,相信学生在沟通新知和旧知之间的联系时会更加的自然而然,也能顺利的实现知识的正迁移。
因此,在数学学习的过程中,应该让学生的探索过程更加的深入,形成一定的学习方法,为今后的学习积累知识经验的同时
圆柱的体积教学反思6
《圆柱的体积》不仅要让学生掌握圆柱体积的计算方法,最重要的是掌握学习的思想方法(转化),因此,教学新课前,复习了圆的面积公式的推导过程,以及长方体正方体的体积计算公式。为转化做好了铺垫。课上,出示课件:等底等高的长方体、正方体、圆柱,学生通过观察,作出猜测:(1)圆柱的体积等于长方体和正方体的体积。(2)圆柱的体积也等于底面积乘高。猜测是否准确呢?点燃学生的学习欲望。让学生根据圆的面积公式的推导过程,让学生迁移想:圆柱体能转化成什么几何形体,然后让学生用教具验证圆柱转化成长方体过程,并讨论思考:这个圆柱体与转化后的长方体相比什么变了,什么没变?从而得出结论圆柱的体积等于底面积乘以高。有一种推导过程是我没有预设到的:一学生回答,长方体的长是圆柱的底面周长的一半,宽是底面半径,高不变。所以圆柱体积=底面周长的一半×底面半径×高。我没有否定她的回答,接着又让学生动手实践操作,让学生发现长方体与圆柱之间的联系,利用圆的周长和面积把圆柱体积的也转化成底面积乘以高。这样有学生的积极主动的参与,不仅创造性的建立了数学模型而且发现圆柱体的转换成长方体的规律,掌握了一种重要的.学习方法,转化。
为了培养学生解题的灵活性,进行分层练习,拓展知识,发散思维。如:已知圆柱底面积和高,怎样求圆柱体积;已知圆柱底面半径和高,怎样求圆柱体积;已知圆柱底面直径和高,怎样求圆柱体积;已知圆柱底面周长和高,怎样求圆柱体积;已知圆柱侧面积和高,怎样求圆柱体积;已知圆柱底面积和体积,怎样求高;已知圆柱体积和高,怎样求底面积等。
在本节课的教学过程中还存在诸多的问题。
1、演示圆柱的体积的时候,因为学生手中没有学具,教师教具的局限性,演示时后面的学生看不清楚。
2、在圆柱体经过切割、拼接之后转化为近似长方体
的时候,应多给后进生留有观察、讨论的时间,他们的思维反应能力比其他学生较慢,应给于他们一定的空间和时间,让后进生也积极参与到课堂的学习中,使全班同学共同进步。
3、在解决实际问题的时候,不仅要注重公式的应用,还要注意计算能力的培养。
圆柱的体积教学反思7
圆柱的体积这部分知识是学生在有了圆柱、圆和长方体的相关知识基础上进行教学的。在知识和技能上,通过对圆柱体积的具体研究,理解圆柱体的体积公式的推导过程,会计算圆柱的体积;在方法的选择上,抓信新旧知识的联系,通过想象、实际操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识“从生活中来到生活中去”的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探究。
一、让学生在现实情境中体验和理解数学
《课程标准》指出:要创设与学生生活环境、知识背景密切相关的、又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。在本节课中,我给学生创设了生活情景(装在杯子中的水的体积你会求吗?圆柱形橡皮泥的体积你会求吗?)学生听到教师提的问题训在身边的生活中,颇感兴趣。学生经过思考、讨论、交流,找到了解决的方法。而且此环节还自然渗透了圆柱体(新问题)和长方体(已知)的知识联系。在此基础上教师又进一步从实际需要提出问题:如果要求某些建筑物中圆柱形柱子的体积,或是求压路机滚筒的体积,能用刚才同学们想出来的办法吗?这一问题情境的创设,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体体积的欲望。
二、鼓励学生独立思考,引导学生自主探索、合作交流
数学学习过程充满着观察、实验、模拟、推断等探索性与挑战性活动,因此,动手实践、自主探究、合作交流是《课程标准》所倡导的数学学习的`主要方式。在本节课提示课题后,我先引导学生独立思考要解决圆柱的体积问题,可以怎么办?学生通过思考很快确定打算把圆柱转化成长方体。那么怎样来切割呢?此时采用小组讨论交流的形式。同爱们有了圆面积计算公式推导的经验,经过讨论得出:把圆柱的底面沿直径分成若干等份。在此基础上,小组拿出学具进行了动手操作,拼成了一个近似的长方体。同学们在操作、比较中,围绕圆柱体和长方体之间的联系,抽象出圆柱体的体积公式。这个过程,学生从形象具体的知识形成过程(想象、操作、演示)中,认识得以升华(较抽象的认识——公式)。
在探究的过程中,我不是安排了一整套指令让学生进行程序操作,获得一点基本技能,而是提供了相关知识背景、实验素材,使用“对我们有帮助吗?”“你有什么发现?”“你是怎么想的?”等这样一些指向探索的话语鼓励学生独立思考、动手操作、合作探究,让学生根据已有的知识经验创造性地建构自己的数学。通过实验、操作、自主探究,实现学生主体地位、学习方式的转变,有效地培养学生的创新意识。教学中通过等分、切、拼将圆柱体拼成一个近似的长方体,再运用多媒体显示由圆柱体到近似的长方体的变换过程,让学生观察、比较近似长方体与圆柱的关系,使圆柱体体积的计算公式推导过程完全展示在学生面前。使学生感悟到转化的思想在几何学习中的妙用。从而产生一种自我尝试、主动探究、乐于发现的需要、动机和能力。
三、建立切拼表象,渗透极限思想
学生进行数学探究时,由于条件的限制,没有更多的学具提供给学生,只一个教具。为了让学生充分体会,我把操作的机会给了学生。接着再结合多媒体演示让学生感受“把圆柱的底面分的份数越多,切开后,拼起来的图形就越接近长方体;接着教师指导学生悟出这个长方体的长相当于圆柱的哪一部分的长度,宽是圆柱哪一部分的长度,高是圆柱的哪一部分的长度,圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。学生基本没有亲身参与操作,非常遗憾。
本节课我采用新的教学方法,取得了较好的教学效果,不足之处是:由于学生自由讨论、实践和思考的时间较多,练习的时间较少。
圆柱的体积教学反思8
《圆柱的体积》一课是在学生已经学习了“圆的面积计算”和“长方体、正方体的体积”及圆柱的相关知识的基础上教学的。
教学时我注重引导学生经历“类比猜想 验证说明”的探索过程。由于圆柱和长方体都是直柱体,长方体的体积是底面积×高,因而我引导学生猜想圆柱的体积是否也可以用底面积×高来计算。接着引导学生想办法证明自己的猜想,也就是验证说明。重视学生已有的经验,是新课改教学的重要理念,因而我引导学生回忆以前学习的“把未知的问题转化为已知的问题”的方法,即“怎样把圆柱转化成已知的形体”的问题。大部分学生都能想到把“圆柱转化成长方体”,接着就“怎样将圆柱转化成长方体”这个问题,让他们观察、研究、讨论。学生受到以前“圆的面积”推导过程的启发,都知道应把圆柱平均分成若干份切开,拼成近似的长方体。由于学生没有学具,因此我用教具演示整个过程,然后引导学生思考:长方体底面的长相当于圆柱底面的什么?(周长的一半即π r)长方体底面的'宽相当于圆柱底面的什么?(圆的半径r)再根据长方体的面积公式推导出圆柱体积公式V=π r2 × h或V=S×h。这样让学生亲身经历知识的形成过程,为学生的主动探索与发现提供了空间。
我觉得本课比较成功的一点是学生除了掌握本课的知识点外,还懂得了“类比猜想 验证说明”的数学思想方法,可以说是既授之于“鱼”,又授之于“渔”。
圆柱的体积教学反思9
一、我在导入时,突破教材,有所创新 圆柱的体积的导入,课本是先让学生回忆“长方体、正方体的体积都可以用它们的底面积乘高来计算”,再接着马上提问:“圆柱的体积怎样计算呢?”让学生们猜一猜。猜想计算方法固然有好处,但要让学生马上做实验理解圆柱体积计算公式的推导过程,我觉得这样教学引入,学生的思维跳跃得太快,衔接性不强,不利于学生理解和掌握实验的用意,课堂效果就会明显不佳。我认为,不妨在回忆了长方体、正方体体积计算方法之后,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想,并能更好地联系旧知,思维过度自然、流畅,便于学生的思维走向正确的方向,这时教师的引导才是行之有效的。
二、我教学新课时,实现人人参与,主动学习 学生进行数学探究时,教师应给予充分的思考空间,创设实践操作的条件,营造出思考的环境氛围。教学“圆柱的体积”时,由于学校教学条件差,没有更多的学具提供给学生,只是由教师示范演示推导过程:把圆柱的底面分成若干份(例如,分成16等份),然后把圆柱切开,照课本上的图拼起来,圆柱体就转化成一个近似的长方体;接着教师指导学生悟出这个长方体的长相当于圆柱的'哪一部分的长度,宽是圆柱哪一部分的长度,高是圆柱的哪一部分的长度,圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。学生没有亲身参与操作,就缺乏情感空间感觉的体验,而且这部分又是小学阶段立体图形的教学难点,学生得不到充分的思考空间,也不利于教师营造思考的环境,不便于学生思考如何利用已知图形体积和教学思想去解决这一问题。学生缺乏行为、认知的投入和积极的情感投入,所以,课堂效果差就可想而知了。
三、我在 练习时,形式多样,层层递进 ,例题“练一练”中的题目都比较浅显,学生还能容易掌握,但遇到多转几个弯的题目就束手无策了。所以,为了让学生能熟练地掌握计算圆柱的体积,教师在设计练习时要多动脑,花心思。
圆柱的体积教学反思10
本节课我注重知识的形成过程,使学生能主动学习新知,突破难点、疑点,能解决实际问题。
1、在教学过程中,让学生自主合作、探究,经历猜想、操作、验证、讨论、归纳等数学活动。比如,我从圆柱模型拼成长方体入手,强调它们是等底等高长方体。由长方体体积公式V=Sh,猜想圆柱的体积公式。再通过学生的具体实际操作、小组合作探究,从而探索出圆柱体积公式,并掌握圆柱体积的计算方法,能解决与圆柱体积计算相关的一些简单的实际问题。
2、在活动中进一步使学生体会“转化”方法的价值,比如,回顾上学期所学的圆的面积推导公式,从而理解圆柱的`底面积与长方体底面积相等。这样有利于培养学生应用已有知识解决新问题的能力,发展空间观念和初步的推理能力。
3、本节课中,我最大的遗憾就是没有采用多媒体课件。但我认为一节好课就非要使用多媒体课件吗?其实不然。当然,今天我在教学中,确实有许多的不足。比如,将圆柱体切割成若干等份,等份越多,分得越细,就越接近于长方体。倘若使用了多媒体课件演示,或许效果更明显。
总之,今天教学中的不足,我会不断改进。既面向全体学生,又注重不同学生的不同发展,设计更精、更符合学生发展的梯度问题,让他们在有限的时空内愉快学习、成长!
圆柱的体积教学反思11
一、导入时,要突破教材,有所创新圆柱的体积的导入,课本是先让学生回忆“长方体、正方体的体积都可以用它们的底面积乘高来计算”,再接着马上提问:“圆柱的体积怎样计算呢?”让学生们猜一猜。猜想计算方法固然有好处,但要让学生马上做实验理解圆柱体积计算公式的推导过程,我觉得这样教学引入,学生的思维跳跃得太快,衔接性不强,不利于学生理解和掌握实验的用意,课堂效果就会明显不佳。我认为,不妨在回忆了长方体、正方体体积计算方法之后,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想,并能更好地联系旧知,思维过度自然、流畅,便于学生的思维走向正确的方向,这时教师的引导才是行之有效的。
二、新课时,要实现人人参与,主动学习学生进行数学探究时,教师应给予充分的思考空间,创设实践操作的条件,营造出思考的环境氛围。教学“圆柱的体积”时,由于学校教学条件差,没有更多的学具提供给学生,只是由教师示范演示推导过程:把圆柱的底面分成若干份(例如,分成16等份),然后把圆柱切开,照课本上的图拼起来,圆柱体就转化成一个近似的'长方体;接着教师指导学生悟出这个长方体的长相当于圆柱的哪一部分的长度,宽是圆柱哪一部分的长度,高是圆柱的哪一部分的长度,圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。学生没有亲身参与操作,就缺乏情感空间感觉的体验,而且这部分又是小学阶段立体图形的教学难点,学生得不到充分的思考空间,也不利于教师营造思考的环境,不便于学生思考如何利用已知图形体积和教学思想去解决这一问题。学生缺乏行为、认知的投入和积极的情感投入,所以,课堂效果差就可想而知了。
三、练习时,要形式多样,层层递进
例题“练一练”中的题目都比较浅显,学生还能容易掌握,但遇到多转几个弯的题目就束手无策了。所以,为了让学生能熟练地掌握计算圆柱的体积,教师在设计练习时要多动脑,花心思去考虑怎样才能让学生用最短的时间完成不同类型的题目。
圆柱的体积教学反思12
教学圆锥的体积是在掌握了圆锥的认识和圆柱的体积的基础上教学的。教学时让学生通过实验来发现圆锥与等底等高的圆柱之间的关系,从而得出圆锥的体
积等于和它等底等高的圆柱体积的三分之一,并能运用这个关系计算圆锥的体积,让学生从感性认识上升到理性认识。
我让学生观察,先猜测圆锥的体积和什么有关,学生联系到了圆柱的体积,在猜想中激发学生的学习兴趣,使学生明白学习目标。教师从展示实物图形到空间图形,采用对比的方法,不断加深学生对形体的认识。然后让学生动手实验:有的组用捏橡皮泥的方法,有的组用到沙子的方法;有的组用计算的方法。让孩子亲历教学的验证过程,从实验中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。接着我趁热打铁,让学生想一想等积等高的时候,圆柱和圆锥有什么样的关系?等积等底的时候,圆柱和圆锥又会有什么样的关系?这样,就有一种水到渠成的感觉。对圆锥的体积建立了鲜明的印象之后,就应用公式解决实际的生活问题,起到巩固深化知识点的作用。
圆锥的体积这节课的教学具有下面的特点,一是在教学新课时,没有像传统教学那样,直接拿出等底等高的圆柱和圆锥容器的教具,让学生观察倒沙实验,而是通过师生交流、问答、猜想等形式,调动学生的积极性,激发学生强烈的探究欲望,学生迫切希望通过实验来证实自己的猜想,所以做起实验就兴趣盎然;二是在实验时,让学生小组合作亲自动手实验,以实验要求为主线,即动手操作,又动脑思考,努力探索圆锥体积的计算方法。这样的学习,学生学的活,记得牢,即发挥教师的主导作用,又体现了学生的主体地位。学生在学习的过程中,始终是一个探索者、研究者、发现者,并获得了富有成效的学习体验
在教学之后感觉到遗憾的是,由于教具有限,参与实验的学生不多,如果每个小组准备一套学具,让他们以小组合作学习的方式使每个学生都能真切的参与到探究中去,这样每个学生都能怀着喜悦的心情进行学习,最大限度的发挥每个学生的自主学习的能力,这样的学习不仅使学生学会了知识,更重要的'是培养了学生的能力。
教材中圆锥体积的相对练习较少,但在考试里面实际解决问题中却常常需要学生能够灵活应用,所以特别增加了一课时练习。教学中的一组填空题,对于帮助学生深入理解等底等高圆柱与圆锥的联系很有价值。通过练习,学生们明确了圆柱与等底等高的圆锥体积和为4个圆锥的体积(或三分之四个圆柱的体积),而它们的体积相差2个圆锥的体积(或三分之二个圆柱的体积)??。掌握这些知识对于解决实际问题很有帮助,如将圆柱削成最大的圆锥,求削去部分的体积是多少,就可直接用圆柱的体积乘三分之二从而使计算简便。
教学的最后我与孩子们一起通过大量的练习,引导总结出了圆柱和圆锥体积和高(或者是底面积)相等,那么圆锥的底面积(或高)是圆柱的3倍,圆柱的底面积(或高)是圆锥的三分之一。
总而言之,圆柱圆锥的体积计算是教学的重点和难点,也是考试中学生容易丢分的危险高发内容,我在后面的教学中需要精讲和精炼,让学生熟能生巧、巧能生精,内化成自己的数学直觉方为最高层次!
圆柱的体积教学反思13
“圆柱体积计算公式的推导”是在同学已经学习了“圆的面积计算”、“长方体的体积”、“圆柱的认识”等相关的形体知识的基础上教学的。同时又是为同学今后进一步学习其他形体知识做好充沛准备的一堂课。
课始,教师创设问题情境,不时地引导同学运用已有的生活经验和旧知,探索和解决实际问题,并制造认知抵触,形成了“任务驱动”的探究氛围。
展开局部,教师为同学提供了动手操作、观察以和交流讨论的.平台,让同学在体验和探索空间与图形的过程中不时积累几何知识,以协助同学理解实际的三维世界,逐步发展其空间观念。
练习布置注重密切联系生活实际,让同学运用自身刚推导的圆柱体积计算公式解决引入环节中的两个问题,使其认识数学的价值,切实体验到数学存在于自身的身边,数学对于了解周围世界和解决实际问题是非常有作用的。
教师无论是导入环节,还是新课局部都恰当地引导同学进行知识迁移,充沛地让同学感受和体验“转化”这一解决数学问题重要的思想方法。同时,还合理地运用了多媒体技术,形象生动地展示了“分成的扇形越多,拼成的立体图形就越接近于长方体”,有机地渗透了极限的初步思想。
圆柱的体积教学反思14
《圆柱的体积》不仅要让学生掌握圆柱体积的计算方法,最重要的是掌握学习的思想方法(转化),因此,教学新课前,复习了圆的面积公式的推导过程,以及长方体正方体的体积计算公式。为转化做好了铺垫。课上,出示课件:等底等高的长方体、正方体、圆柱,学生通过观察,作出猜测:
(1)圆柱的体积等于长方体和正方体的体积。
(2)圆柱的体积也等于底面积乘高。
猜测是否准确呢?点燃学生的学习欲望。让学生根据圆的面积公式的推导过程,让学生迁移想:圆柱体能转化成什么几何形体,然后让学生用教具验证圆柱转化成长方体过程,并讨论思考:这个圆柱体与转化后的长方体相比什么变了,什么没变?从而得出结论圆柱的体积等于底面积乘以高。有一种推导过程是我没有预设到的:一学生回答,长方体的长是圆柱的底面周长的一半,宽是底面半径,高不变。所以圆柱体积=底面周长的一半×底面半径×高。我没有否定她的回答,接着又让学生动手实践操作,让学生发现长方体与圆柱之间的联系,利用圆的周长和面积把圆柱体积的'也转化成底面积乘以高。这样有学生的积极主动的参与,不仅创造性的建立了数学模型而且发现圆柱体的转换成长方体的规律,掌握了一种重要的学习方法,转化。
在本节课的教学过程中还存在诸多的问题。
1、演示圆柱的体积的时候,因为学生手中没有学具,教师教具的局限性,演示时后面的学生看不清楚。
2、在圆柱体经过切割、拼接之后转化为近似长方体的时候,应多给后进生留有观察、讨论的时间,他们的思维反应能力比其他学生较慢,应给于他们一定的空间和时间,让后进生也积极参与到课堂的学习中,使全班同学共同进步。
3、在解决实际问题的时候,不仅要注重公式的应用,还要注意计算能力的培养。
圆柱的体积教学反思15
圆柱的体积计算方法的推导。教学前我就思考,不仅要让学生掌握圆柱体积的计算方法,最重要的是掌握学习的思想方法(转化),因此,教学新课前,复习了圆的面积公式的推导过程,以及长方体正方体的体积计算公式。为转化做好了铺垫。课上,出示挂图:等底等高的长方体、正方体、圆柱,学生通过观察,作出猜测:
(1)圆柱的体积等于长方体和正方体的体积。
(2)圆柱的'体积也等于底面积乘高。猜测是否准确呢?
点燃学生的学习欲望。让学生根据圆的面积公式的推导过程,让学生迁移想:圆柱体能转化成什么几何形体,然后让学生用学具验证圆柱转化成长方体过程,并讨论思考:这个圆柱体与转化后的长方体相比什么变了,什么没变?从而得出结论圆柱的体积等于底面积乘以高。还有一种推导过程是我没有预设到的:一学生回答,长方体的长是圆柱的底面周长的一半,宽是底面半径,高不变。所以圆柱体积=底面周长的一半×底面半径×高。首先我对这种方法加以肯定,然后利用圆的周长和面积把圆柱体积的也转化成底面积乘以高。这样有学生的积极主动的参与,不仅创造性的建立了数学模型而且发现圆柱体的转换成长方体的规律,掌握了一种重要的学习方法,转化。
【圆柱的体积教学反思】相关文章:
《圆柱的体积》教学反思02-03
圆柱的体积教学反思04-18
《圆柱的体积》教学反思03-31
圆柱的体积教学反思(15篇)03-25
圆柱的体积教学反思精选15篇04-05
圆柱的体积教学反思15篇03-24
《圆柱的体积》教学反思15篇03-31
《圆柱的体积》教学反思(15篇)04-04
《圆柱的体积》教学反思(精选15篇)04-04