乐文网>教学资源>教学反思>分数乘整数教学反思

分数乘整数教学反思

时间:2021-12-21 08:27:26 教学反思 我要投稿

分数乘整数教学反思(精选3篇)

  身为一位优秀的教师,我们的工作之一就是课堂教学,借助教学反思可以快速提升我们的教学能力,那么什么样的教学反思才是好的呢?下面是小编整理的分数乘整数教学反思(精选3篇),仅供参考,希望能够帮助到大家。

分数乘整数教学反思(精选3篇)

  分数乘整数教学反思1

  分数乘整数的知识基础在于同分母分数加法的计算方法及分数的意义及整数乘法的意义等知识。在课堂的开始环节,我对这些内容进行了一定的复习,再进入分数乘整数的教学。

  分数乘整数的算法很简单,在相乘时,分母不变,只把整数和分数的分子相乘作分子。在教学这个内容时,我关注到新教材在算理方面的重视,注意到图形和算式之间的联系,在计算前充分让学生感知画、涂图形的过程。因此,在后面计算方法的得出就水到渠成,比较容易了。再者,对“分数乘整数表示的意义”也有机的渗透,为后面的知识打好铺垫。

  一堂课上下来,由于学生对内容比较容易接受,课堂上有了空余时间。学生对算理的理解比较清晰,但还存在的问题就是约分的环节,有些学生喜欢算出结果以后再约分,对计算过程约分还不愿意采用。这一环节还应讲深讲透。学生可能对于这种在计算过程当中的约分,还是一知半解,对这样约分的`道理理解得不够清楚。学习分数乘整数,学生在计算时肯定会遇到先约分后乘还是先乘后约分的问题。如果仅仅是为得到一个正确的结果,那么无论前者,还是后者,都无关紧要,只要不出差错,最后都能得到正确结果。显然,我们还需要学生养成良好的计算习惯,较高的计算速度和计算正确率!那么我们就必须让学生明白到底哪种思路更合理,更有助于自己的后续学习。作为分数乘法的第一节课——分数乘整数,形成先约分后计算的良好计算习惯,对于提高学生计算的正确率和计算速度,有着很重要的作用。在教学分数乘法在过程中约分时,我给学生练习的题目是:×5,并且列出两种做法让学生进行比较。但我觉得这道题并不能体现在计算过程中先约分的优越性。应该将题目改得稍复杂些,变成“13×5/26”,并且和同学们一起比赛谁做得快。如果哪位学生是用整数直接乘以分子的,速度当然会很慢,当做得最快的同学展示自己的做法时,其他同学恍然大悟,深刻体会到计算过程中先约分,可以化繁为简。这样,学生在做分数乘法时,不仅仅满足于“分子和整数相乘的积作分子,分母不变”,而是记住“能约分的要约分”这一要点。

  分数乘整数教学反思2

  分数乘整数是“分数乘法”教学的第一课时,是学生理解分数乘法意义的起点。这部分教材是在学生已学的整数乘法的意义和分数加法计算的基础上进行教学的。

  在教学中,我充分利用学生已有的知识经验,努力结合现实的'问题情境,将计算学习与解决问题有机结合,放手让学生自主探究分数乘法的意义。创设学生喜欢的实际情境,让学生根据实际问题的数量关系,列出算式。学生很容易结合整数乘法的意义,列出乘法算式。这样处理,既有利于学生主动地把整数乘法的意义推广到分数中来,即分数和整数相乘的意义与整数乘法的意义相同,都是求几个相同加数和的简便运算。

  在教学分数和整数相乘的计算法则时,我指导学生从读一读,说一说,练一练,想一想,议一议五个方面入手,例如:教学3/10×5,首先让学生明确,要求3/10×5,也就是求3/10+3/10、3/10+3/10+3/10是多少,并联系同分母分数加法的计算得出3+3+3+3+3/10,然后让学生分析分子部分5个3连加就是35,并算出结果,在此基础上,引导学生观察计算过程,特别是3/10×5与35/10之间的联系,从而理解为什么“同分子和整数相乘的积作分子,分母不变”。接着让学生自己尝试练一练7/10×5,然后进行集体交流,看一看能不能在相乘之前的那一步先约分,比一比在什么时候约分计算可以简便一些,从而明白为了简便,能约分的先约分。

  总之,本节课我能尽量调动学生的多种感官,改变以例题、示范、讲解为主的教学方式,改变以记忆法则、机械训练为主的学习方式,引导学生投入到探索与交流的学习活动之中,让学生变被动为主动,参与到算理的探讨、运算规律的归纳中来。

  分数乘整数教学反思3

  一、引导自主探索,了解分数与整数相乘的意义。

  1、导入新课时,引导学生涂色表示3个米,目的是让学生认识到求3个米可以用加法计算,也可以用乘法计算,再借助所列的加法算式初步理解分数与整数相乘的意义,并为引导学生探索分数与整数相乘的计算方法进行了知识结构上的铺垫。

  2、通过交流与讨论,引导学生主动联系已有的知识经验进行分析、归纳和类推,进一步发展学生合情推理能力,体验探索学习的乐趣。

  二、加强过程体验,体会过程约分比结果约分更简便。

  在解决例1的第(2)题时,我在处理算法多样化与算法优化时设计了88×8/11=?的练习,让学生用两种方法计算,加强过程体验,学生通过亲身体验后,体会到过程约分比结果约分更简便且不易错,形成一种内在需求,优化算法。

  存在不足:

  本课算理强调还不够,特别是练一练第1题,在学生独立完成后,我在组织交流时不够充分,只交流了学生的`计算方法和结果,忽视了学生是如何涂出4个3/16的,后来我发现学生涂得方法很多,其实通过学生涂色写算式,可以沟通分数乘法和分数加法间的联系,进一步体会分数与整数相乘的意义,体会“求几个几分之几相加的和”可以用乘法计算的算理,我没有很好地把握教材这一练习设计的意图,没有敏锐地把握教学资源,很好地巩固算理。

【分数乘整数教学反思】相关文章:

《分数乘整数》教学反思06-03

分数乘整数教学反思04-13

分数乘整数教学反思15篇04-20

分数乘整数教学反思(15篇)04-20

分数乘整数教学反思(通用4篇)05-25

分数乘整数教学反思(合集15篇)04-20

《小数乘整数》教学反思04-07

小数乘整数教学反思04-07

《分数乘分数》教学反思03-31