- 相关推荐
等比数列教学反思(精选3篇)
身为一名刚到岗的教师,我们要在教学中快速成长,对学到的教学技巧,我们可以记录在教学反思中,那么什么样的教学反思才是好的呢?以下是小编为大家收集的等比数列教学反思(精选3篇),希望能够帮助到大家。
等比数列教学反思1
探索等比数列通项公式的环节中,教师不应简单地给出公式让学生机械记忆,而是通过数学建模活动启发学生,引导学生从实际情境中发现规律。类比等差数列通项公式的获得过程,寻求等比数列中四个量之间的关系,引导学生利用迭代法及叠加法得到等比数列的通项公式。在教学活动中渗透了数学建模的思想。
在等比数列概念的建立及通项公式的探索过程都充满了类比的归纳的数学思想,目的是使学生体会等差数列与等比数列的知识的`有关联系,感受数学的整体性。
本节课后,最大的一个感受就是在课堂上我们要说的每一句话,要提的每一个问题,包括内容先后顺序的设置都必须反复推敲,细细琢磨。语言要简练,提出的问题要有针对性,而且内容的设置必须切实符合学生的认知规律。我们不仅要考虑到学生的实际水平,而且需要预先想到课堂中学生会提到的问题以及出现的错误,并及时对学生的表现给与充分的表扬、鼓励以及正确的引导。
本节课是等比数列的第一课时,注重概念的讲解以及通项公式的推导。由于前边已经学习了等差数列的有关内容,本节课主要就是采用类比的思想,在教师的引导下,以学生为主体完成整个课堂教学。就课堂反馈情况来看,我的引导比较到位,讲解也比较透彻,重点突出,前后呼应,学生完成的比较理想,实现了预期的教学目标。学生的课堂活动很积极,课堂气氛融洽,实现了良好的师生互动,完成了预先的教学设计过程。板书有条理,课件展示得当,时间把握恰当。
就学生的课后反馈来看,基础较好的学生反映课堂容量较小,也有部分同学反映练习题比较简单,随堂练习在层次上没有太大差异,不能很好的满足各个层次学生的需要,今后在习题的选择上应多下功夫,多查阅些资料,精选细练,力求让每个学生各有所得,都能找到适应个人实际的练习,帮助他们更好的理解当堂的基础知识,也便于课后学生个人的复习总结。更好的实现课堂教学的时效性。
课后反思:使我更深刻地认识到教学不仅是一门学问,也是一门艺术,值得我们在日常教学中不断探索,不断学习,不断研究,不断反思,只有这样才能不断地进步。这也为我以后的教学奠定了很好的基础,让我明确了自己今后努力的方向。在今后的教学中我会不断地反思,寻找不足,争取更大的进步。
等比数列教学反思2
子曰:“知之者不如好之者,好之者不如乐之者。”意思是说:学习知识或本领,知道它的人不如爱好它的接受得快,爱好它的不如对其有兴趣的接受得快。为了激发学生的学习热情,实施趣味教学,我首先利用一个初中自然学科中的“细胞分裂”的问题以及银行的一种支付利息的方式——复利(把前一期的'利息和本金,再计算下一期的利息,也就是通常说的“利滚利”,其计算公式是:本金和=本金(1+利率)存期。
引入新课。然后,再由浅入深,由低到高地设置了三个层次的问题,逐步加深学生对等比数列定义及其通项公式的记忆和理解。在教学过程中,我采用了发现式教学法、分组讨论法、类比分析法。在学生练习过程中,我以游戏抢答方式、分组竞争方式,使课堂气氛较为活跃。针对职高学生的实际情况,我对教材的引入、例题、练习作了适当的补充和修改,增强了学生的学习兴趣,也提高了课堂教学效果。在课堂上还是有少数学生参与不够积极,回答问题比较被动,还需要加大力度调动学生的学习积极性和主动性。
教学建议:
1、从学生的提问和老师询问中我们发现,有的学生对“通项公式”理解还不到位,首先他们不知道通项究竟是哪一项,因此,建议老师在讲解数列的概念时就可以换一种说法来解释“通项”:例如说通项就是一个数列中“普通的项”,“一般的项”,也就是“任意的一项”。
2、公式的推导过程还是按等比数列的定义,用代入的方式一步一步推出比较好,即能紧扣“后项比前项等于常数”,结果又能令人信服。
3、学生似乎有一种定向思维:数列只能从小变到大,为改变这种思维模式,还可以增加一个公比为的例题。
4、学生的积极性还不够,本节课前老师准备的提问、问题思考及习题让学生参与到课堂教学中来,充分的体现了“以学生为中心”这一主题,不过在教学内容的选择上还是有点偏少,最后一道思考题:已知一个等比数列的前4项是4,16,64,x,则x的值是多少?对大部分学生来说难度较大,学生应该难以完成,在今后的教学中还需进行适当的调整。
6、本节课的课件较为简单,板书比较清楚,步骤比较详细,对于职高学生来说较为适合。
5、本堂课内容只适合基础较差的职高学生。职业学校学生的基础比较薄弱,每一节的教学内容要适合学生的实际情况,最好是能将解题的步骤详细写出来,让学生严格按照步骤要求来解决问题。
等比数列教学反思3
背景分析:
在学过了等差数列后,怎样引入等比数列的定义?经过教学实践,认为采用创设如下的类比性问题情境,引导学生再发现等比数列定义,效果较好。
教学反思:
在课堂中,把等比数列定义及通项公式的探索、发现、创新等思维过程的暴露,知识形成过程的揭示,作为教学重点。同时采用启发式、谈话式的教学方法,引导学生进行类比推理,促使学生不知不觉地参与教学的全过程,为学生自己探索发现等比数列的有关知识营造了良好的氛围,体现了数学发现的本质,培养了学生合情推理能力、逻辑推理能力、科学的思维方式及勇于探索的创新意识等个性品质。
需要注意的是:教师如果忽视学生内在的知识结构和新旧知识之间的潜在联系,简单地从外部给学生“灌入”新知识,仅仅以课本为本,以教学大纲为纲进行备课和上课,教学效果定会不尽人意。只有充分考察了学生的知识结构,才能通过引导学生进行知识的迁移、类比,引导他们发现知识之间的`联系,从而使新知识有效地纳入学生的认知结构中,并逐步培养了学生的创新能力。
华罗庚先生说:“难处不在于有了公式去证明,而在于没有公式之前,怎样去找出公式来。”所以说,定理、法则、公式的归纳、猜想、发现的过程比证明过程更重要。归纳是人类探索真理和发现真理的主要工具之一,归纳法在发现新的数学问题,在探索和发现解题途径的过程中起着重要作用。在研究数学问题时,常常将一些一般问题通过特殊化来考察,从中发现一般问题的结论或解题途径,这种由特殊到一般的思考,能否有所发现,关键在于恰当地运用归纳法。
【等比数列教学反思】相关文章:
关于教学反思的反思04-22
教学的反思12-08
教学反思03-25
经典教学反思04-21
古诗教学教学反思04-01
高效教学教学反思03-31
拼音教学教学反思04-21
鲸教学反思11-16
《画风》教学反思11-03