分数除法教学反思(精选)
身为一位优秀的教师,教学是重要的任务之一,对学到的教学新方法,我们可以记录在教学反思中,那么你有了解过教学反思吗?以下是小编帮大家整理的分数除法教学反思,仅供参考,大家一起来看看吧。
分数除法教学反思1
这节课是分数除法教学的起绐课。分数除法的意义及计算方法是本单元的重要内容,也是学生理解的困难之处。我是想作为分数除法的第一个知识点,利用折一折,算一算等活动,让学生在实际操作中借助图形语言,利用已学过的分数乘法的意义,解决有关分数除法的问题,从而理解分数除法的意义,并从中总结出分数除以整数的计算方法。分数除以整数是学生学习了分数乘法和认识了倒数的基础上进行的,学生之前已掌握了分数乘分数的`计算方法,为本节课的新知学习起到了良好的铺垫作用。
在教学中注重以下几点。
1、 强调知识的迁移和类推。
在教学中,先复习整数除法意义再进行分数除法意义的教学,可以使学生利用知识的迁移和类推很容易得出分数除法的意义。
2、 以自主探索为主。
提供给学生自主学习的机会,给学生充分思考的空间和时间,允许并鼓励他们有不同算法,尊重他们的想法,哪怕是不合理的,甚至是错误的,让他们在相互交流、碰撞、讨论中,进一步明确算理。
一节有效的课堂应该建立在有效的小组合作上,整节课下来我发现在小组合作方面我还应多钻研,如何调动小组的积极性?如何让小组的每一位成员都乐于参与其中?将是我接下来主要的研究方向,真正做到合作、交流、共同探究!
分数除法教学反思2
数学课程标准指出:有效的数学学习活动动手实践、自主探索和合作交流是学生学习数学的重要方式。本节课的教学设计我注重了学生自主探究和小组合作学习能力的培养,注重学生知识生成过程的教学。
首先我选择简单的切入点,从解决问题入手,引出两数相除,商可以用分数来表示;
再次创设问题情景,引发学生不断思考。在教学例2时,先在小组内讨论交流,大胆放手让学生自主探究,再动手操作将3个饼平均分给4个人。给学生充分的探究交流时间,在展示汇报时,学生给我了惊喜,我感觉到本次学生的小组合作学习是非常有效的,他们的`分法竟然有4种之多,而课本上只是一幅图展示了一种分法。对本节课的难点,分数的两种表示方法水到渠成的突破了。由此我相信只要给学生充足的时间,学生的潜能一定会很好的彰显出来。
最后让学生通过观察、比较、归纳出分数与除法的关系。学生的学习兴趣浓厚,教学效果比较好。
本节课也存在一些问题:学生小组合作、动手操作能力还有待进一步提高速度;学生在投影上展示时,学生自己准备的学具具纸片太薄,不便于操作;老师对学生还是不够放心,对重点内容在学生探究出来以后,还会再次强调,导致最后的练习时间较仓促。
分数除法教学反思3
分数除法解决问题老教材在解题方法上是以算术方法为主,侧重于让学生找单位“1”,分析单位“1”的量是否已知,然后根据单位“1”的量知道与否决定是用乘法还是除法。在列算式的时候,注重量、率对应分析,即用公式模式。而新教材中的解题方法则淡化了这种用算术解题的要求,更侧重于与初中知识的衔接,侧重于用代数思想解题,注重让学生分析题中的意思,用代数思维解题即让学生根据题中的等量关系和分数乘法的意义列出方程,这样思路达到统一。但由于小学生目前尚未接触到比较复杂的,用算术方法很难解决的实际问题,所以对方程解法的`优越性认识不足。一些学生觉得用方程解需要写设句,比较麻烦,因此喜欢用算术解法。
不足之处:1.本节课花了较多的时间让学生说不同的思考方法、思考过程,对于哪些学困生来说是不是有必要,因为他们只能听懂其中的某一些解法,在别人说的时候,他们在一定的时间段里成了“观众”和“听众”,如何更好地面向每一位学生是以后努力的方向。2.反馈形式比较单调,缺乏激励性的语言和形式,某种程度上影响了学生学习的积极性,应采取多种形式如让学生间搞个小竞赛等来活跃课堂气氛,激发学生学习的兴趣。
分数除法教学反思4
本课的教学重点和难点是让学生理解“为什么除以一个分数,等于乘它的倒数”,否则,会使学生陷入只背结论,不明道理的误区,这样的结果或造成学生出错率高,为了很好的突出重点、突破难点,我创造性地使用了教材,做了如下的设计:
一、动手操作,增加直观性。
1、拿出自己准备好的圆形的纸,把它平均分成两份,每份是这张纸的几分之几?怎样计算?结果是多少?学生们通过自己的操作,很快说出了,“1除以2等于二分之一”的正确答案;
2、问:这半张纸,也就是整张纸的二分之一,那么这张纸里有几个这样的二分之一呢?怎样计算?结果是多少?学生们通过观察和思考,得出了“1除以1/2等于2”的结论。我对学生的做法进行了肯定和鼓励。
3、再问:如果把整张纸每1/3一份,又可以分成多少份呢?每四分之一、每五分之一呢?
学生通过亲自动手操作,很快得出了“1除以1/3等于3,1除以1/4等于4的正确结论”,到了1除以1/5时,根本不用动手折就得出了正确的结论。而且大部分学生都总结了“1除以几分之一,就等于几”规律。看着学生们兴奋的表情,我提出了以下的问题:观察以上的算式河的书,你发现了什么?
二、观察讨论,形成规律
学生们通过观察,讨论终于发现了“除以一个分数,等于乘它的.倒数”,我又追问:为什么要这样做?大家通过回忆分数的意义,也弄明白了其中的道理。
这节课的学习,学生们大部分掌握了计算方法,但有个别学生在计算时有除号不变的现象。所以,今后应加强这方面的训练,使学生全部掌握计算方法。在解答方程时也不会出错,提高计算能力和解题能力。
分数除法教学反思5
今天执教了一节《分数除法(一)》的数学课的教学。本课是第三单元的起始课,内容涉及到以前整数除法意义的复习,加上本节教学知识点——分数除以整数的意义和方法,设计难度除内容多外且知识抽象,学生不易理解和接受,备起课来难度较大。不过越是有难度的课自己还偏偏有一种想要挑战的心理,毕竟自己迟早是要讲的,而且这样的讲课其实最终目的是为了促进自己教学水平的提高,如果只是为了一节精彩课的展示而有意避重就轻也许恰恰就失去了上课听课评课的本意了。
自知自己对于数学学科的造诣不是很精深,但个人感觉数学课应该要把握住几点:教学语言凝练、具有启发和点拨的作用;流程设计要详略得当、突出重点、分散难点;习题设计体现由浅入深的梯度性;教学覆盖面广,充分发挥学生的积极性和主动性,体现学生的主体地位等等……也许是个性使然,或者是文科味道较浓的教学风格,因此执教较为枯燥乏味的数学课也很喜欢赋予它一种文质兼美的特点,喜欢让知识性较强的`数学课也能带上情感的韵味和兴趣的刺激。尽管事先对于教材进行了一番分析和思考,对于课堂情景和学生进行了预设,尤其是对自己的教学语言也做了格外的注意和设计。但实施起来之后,自己之前最担心的问题还是出现了,由于内容过多,加上课上生成的东西自己也没有做到较为妥当的处理,不可避免的遗憾随之而来,即课堂效果没有预期的理想,学生的学显得不够扎实和深透,自己在教学课件等一些形式的利用上与教学内容的把握上没有达到一个有机的统一。度的失衡使得这节课不免流于形式而略显不实,假如在个别地方善于取舍或是科学的估计四十分钟的教学时间的容量,那么遗憾也许会降到最低程度。
通过今天的讲课,感觉收获很多,要学习的、要改变的、要给予学生的还有很多很多。教学,真的是一门永远探究不完的艺术。即便今天的教学没有任何遗憾,即便学生的表现十分精彩,但我仍然知道,自己距离那种“突破”还有着很长的一段路……。
分数除法教学反思6
为了更好到激发学生主动积极地参与分数除法应用题学习的全过程,引导学生正确理解分数除法应用题的数量关系。因而在设计时,我从学生已有知识出发,抓住知识间的内在联系,通过对分数乘法应用题的转化,使学生了解分数除法应用题的特征,并借助线段图,分析题目中的数量关系,通过迁移、类推、分析、比较,找出分数乘除法应用题的区别和联系及解题规律。
一、关注过程,让学生获得亲身体验。
教学中,为让学生认识解答分数应用题的关键是什么时,我故意不作任何说明,让学生发现问题,亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数乘法应用题的关键是从题目的关键句找出数量之间的相等关系。
在教学中体现了“自主、合作、探究”的教学方式。以往分数除法应用题教学效率并不高,是因为大多数时间我在课堂教学中为了自己省心、学生省力,往往避重就轻,草草带过,舍不得把时间用在过程中,总是急不可待,直奔知识的技能目标,究其根由,在于教师的课堂行为,我缺乏必要的耐心。或者把学生本来已经理解的地方,仍做不必要的分析;或者把学生当作学者,对本来不可理解的,仍做深入的、细碎的剖析,这样就浪费了宝贵的课堂时间。
因此在今年整体的教学中已经改变了自己的教学方法,尤其在本节课上我把分数除法应用题与引入的分数乘法应用题结合起来教学,让学生通过讨论交流对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力,省去了许多烦琐的`分析和讲解。教师在教学中准确把握自己的地位。教师真正把自己当成了学生学习的帮助者、激励者和课堂生活的导演,凸显了学生的主体地位,体现了生本主义教育思想。也只有这样才能真正落实《数学课程标准》中,“在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心”的目标,让学生的思维真正得到发展。
二、多角度分析问题,提高能力。
在解答应用题的时候,我通过鼓励学生尽量找出其它方法,让学生从多角度去考虑,这样做拓展了学生思维,引导了学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。
三、在充分的感知、体验的基础上比较分析,水到渠成的完成求“1”的量用方程做或算术法做,沟通了新旧知识的联系,又揭示新知识的本质属性。
四、不仅巩固知识,给不同层次的学生起到不同的教学作用,又能为归纳求“1”的量的应用题的方法奠定基础。
分数除法教学反思7
这节课的重点是理解分数与除法的关系,难点是用除法意义理解分数意义。让学生通过本节课的学习,初步知道两个整数相除,不论是被除数小于、等于、或大于除数,都可以用分数来表示商。能运用分数与除法的关系,解决一些简单的问题。
这节课的内容还是比较简单的。如果单纯的教学它们的.关系:一个分数的分子相当于除法中的被除数,分母相当于除数。学生一定学得很扎实,但是这样一来3÷4=的算理往往被忽视。因此我把重点放在例题2,3÷4=()(块)的探究上。
在教学中我引导学生用3张圆形纸片动手分一分,并让学生思考把3块饼平均分给4个小朋友可以有几种分法。
生1: 我们先把1块饼看作单位“1”,平均分成4份,每人先拿其中的一份,有3个圆,那就是每人有3个1/4块是3/4块。
生2: 把3块饼重叠的放在一起,然后再平均分成4份,每人拿其中的一份,里面也有3个1/4是3/4块。
让学生通过动手操作,得出两种不同的分法,引申出两种含义,即1块饼的3/4,3块饼的1/4,通过这一过程,学生充分理解了3÷4=的算理。
在整节课中我注重让学生主动参与学习过程,学生的主体地位得到了充分体现,在学习活动中,发展了个性,培养了能力。
分数除法教学反思8
一、教学内容:分数与除法,教材第65、66页例1和例2
二、教学目标:1.使学生理解两个整数相除的商可以用分数来表示。
2.使学生掌握分数与除法的关系。
三、重点难点:1.理解、归纳分数与除法的关系。
2.用除法的意义理解分数的意义。
四、教具准备:圆片、多媒体课件。
五、教学过程:
(一)复习
把6块饼平均分给2个同学,每人几块?板书:6÷2=3(块)
(二)导入
(2)把1块饼平均分给2个同学,每人几块?板书:1÷2=0.5(块)
(三)教学实施
1.学习教材第65 页的例1 。
(1)如果把1块饼平均分给3个同学,每人又该得到几块呢?1÷3=0.3(块)
(2)1除以3除不尽,结果除了用循环小数,还可以用什么表示?
( 3)指名让学生把思路告诉大家。
就是把1块饼看成单位“1”,把单位“1”平均分成三份,表示这样一份的数,可以用分数3(1)来表示,这一份就是3(1)块。
老师根据学生回答。(板书:1 ÷ 3 =3(1)块)
(4)如果取了其中的两份,就是拿了多少块?(3(2)块)怎样看出来的?
2.观察上面三道算式结果得出:两数相除,结果不仅可以用整数、小数来表示,还可以用分数来表示。引出课题:分数与除法
3.学习例2 。
( 1 )如果把3 块饼平均分给4个同学,每人分得多少块?(板书:3 ÷ 4)( 2 )3 ÷ 4 的计算结果用分数表示是多少?请同学们用圆片分一分。
老师:根据题意,我们可以把什么看作单位“1 " ? (把3 块饼看作单位“1”。)把它平均分成4 份,每份是多少,你想怎样分?请同学到投影前演示分的过程。
通过演示发现学生有两种分法。
方法一:可以1个1个地分,先把1 块饼平均分成4 份,得到4 个4(1),3 个饼共得到12个4(1), 平均分给4 个学生。每个学生分得3个4(1),合在一起是4(3)块饼。
方法二:可以把3 块饼叠在一起,再平均分成4 份,拿出其中的一份,拼在一起就得到4(3)块饼,所以每人分得4(3)块。
讨论这两种分法哪种比较简单?(相比较而言,方法二比较简单。)
( 3 )加深理解。(课件演示)
老师:4(3)块饼表示什么意思:
①把3块饼一块一块的分,每人每次分得4(1)块,分了3次,共分得了3个4(1)块,就是4(3)块。
②把3块饼叠在一块分,分了一次,每人分得3块4(1),就是4(3)块。
现在不看单位名称,再来说说4(3)表示什么意思?( 表示把单位“1 “平均分成4 份,表示这样3 份的数;还可以表示把3 平均分成4份,表示这样一份的数。)
( 4 )巩固理解
① 如果把2块饼平均分给3个人,每人应该分得多少块? 2÷3=3(2)(块)
②刚才大家都是拿学具亲自操作的,如果不借助学具,你能想像出5块饼平均分给8个人,每人分多少块吗?(生说数理)
③从刚才的研究分析,你能直接计算7÷9的结果吗?(9(7))
4.归纳分数与除法的关系。
( l )观察讨论。
请学生观察1÷3 = (块)3÷4 =4(3)(块)讨论除法和分数有怎样的关系?
学生充分讨论后,老师引导学生归纳出:可以用分数表示整数除法的商,用除数作分母,被除数作分子,除号相当于分数中的分数线。(课件出示表格)
用文字表示是:被除数÷除数=
老师讲述:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数。
( 2 )思考。
在被除数÷除数=这个算式中,要注意什么问题?(除数不能是零,分数的分母也不能是零。)
( 3 )用字母表示分数与除法的关系。
老师:如果用字母a 、b 分别表示被除数和除数,那么除数与分数之间的关系怎样表示呢?
老师依据学生的总结板书:a÷b = (b≠0)
明确:两个整数相除,商可以用分数表示,反过来,分数能不能看作两个整数相除?(可以,分数的分子相当于除法中的.被除法,分母相当于除数。)
5.巩固练习:
(1)口答:
①7÷13=()(()) 8(5)=( )÷( ) ( )÷24=24(25) 9÷9=()(()) 0.5÷3=3(0.5) n÷m=()(())(m≠0)
②1米的8(3)等于3米的( )
③把2米的绳子平均分3段,每段占全长的 ( ),每段长( )米。
(2)明辨是非
①一堆苹果分成10份,每份是这堆苹果的10(1) ( )
②1米的4(3)与3米的4(1)一样长。( )
③一根木料平均锯成3段,平均每锯一次的时间是所用的总时间的3(1)。( )
④把45个作业本平均分给15个同学,每个同学分得45本的 15(1) 。()(3)动脑筋想一想
①把一个4平方米的圆形花坛分成大小相同的5块,每一块是多少平方米?
(用分数表示)
②小明用45分钟走了3千米,平均每分钟走了多少千米?每千米需要多少时间?
分数除法教学反思9
“分数除法应用题”的教学是小学数学教学的重要内容,也是学生学习中出现问题最多的内容。长期以来一直受到教师们的重视,特别是到了六年级要学习的分数乘除法应用题,更是重中之重,因为它是小学毕业考试的必考内容。一些教师根据多年来的教学经验总结出一套分析解答分数应用题的方法,如“是、占、比、相当于后面是单位1”;“知1求几用乘法,知几求1用除法”等等。这些方法看似行之有效,在一定意义上也为那些学习有困难的学生提供了帮助。但长此以往,学生便走上了生搬硬套的模式,许多同学在并不理解题意的情况下,也能做对应用题。然而在这种教学方法指导下获得的知识是僵化的,许多学生虽然会熟练的解答应用题,但却不会在实际生活中加以运用,原因在于他们生活中遇到的问题不是以标准形式的应用题出现,在这里找不到“是、占、比、相当于”,也就找不到标准量,学生因此无从下手。
我在教学《分数除法应用题》时,是先让学生自己先预习,看看还有那些,不理解的地方。然后再让学生分组进行讨论交流,本着“学生能思考的,教师决不暗示;学生能说出的,教师决不讲解;学生能解决的,教师决不插手。”的教学的思想,在适时因人,解决引导点拨。由于教师在课堂上适时的“隐”与“引”,为学生提供了施展才华的舞台,使他们真正成为科学知识的探索者与发现者,而不是简单的被动的接受知识的容器。这样的教学,可以更好的调动学生学习的主动性,鼓励学生自己提出问题,解决问题,从而提高学生解决实际问题的能力。
教学中我把分数除法应用题中的例题与“试一试”结合起来教学,让学生通过讨论交流对比,亲自感受它们之间的'异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力,省去了许多烦琐的分析和讲解。在教学中准确把握自己的地位。教师真正把自己当成了学生学习的帮助者、激励者和课堂生活的引导者,凸显了学生的主体地位,及老师的主导地位。
在巩固练习中,通过鼓励学生根据条件把数量关系补充完整,看图列式、编题,对同一个问题根据算式补充条件等有效的练习,拓展了学生的思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新思维。
分数除法教学反思10
本课时主要是对分数除法应用题部分知识的一个复习巩固。分数除法主要包括四种类型的问题:“已知一个数的几分之几是多少,求这个数”“已知比一个数多(少)几分之几的数是多少,求这个数”“分数和倍问题”和“分数工程问题”。可以说这四类问题涵盖了实际生活中大部分的情况。本课时的学习,有利于学生应对更多更复杂的.情况。在本课时的教学中,我主要注意了以下几点: 1.充分发挥学生的主观能动性。在练习中,我放手让学生自想、自做、互评。学生自主思考,独立完成,如有疑问,则与同桌或在组内自由进行交流,最后集体订正。学生学得主动、积极,就连学习稍弱的学生也很主动地参与进来。 2.重视学生的情感体验。 在练习中,通过自主探究和小组间的合作交流,使学生一直处于问题的解决过程中。在这个过程中,我让学生不断积极,主动地表现自我,同时还注意用积极的语言来对他们的解题思路和方法给予评价,让他们获得一种积极的情感体验。
分数除法教学反思11
分数与除法的关系是在学生学习了分数的意义后进行教学的,目的是使学生初步知道两个整数相除,不论是被除数小于、等于、或大于除数,都可以用分数来表示它们的商。
这部分内容的教学,不但可以加深学生对分数意义的理解,而且是后面学习假分数、带分数、分数的基本性质以及比、百分数的基础,所以,分数与除法的关系在整个教材中起着承上启下的重要作用。如果单纯地从形式上去教学分数与除法间的关系,学生能学得很扎实,但这样一来计算3÷4=3/4的算理往往被忽视,为了让学生知其然且知其所以然,我是这样来组织教学的:
1.通过实际操作感悟新知识
在教学中,我设计了这样的教学情境,把一张饼平均分给四个小朋友,每人分得多少?让学生拿一张圆形纸片代表一张饼,亲自动手分一分,唤起对分数意义的理解。接着出示要把3张饼平均分给4个小朋友,每个小朋友分得多少?四人一小组想办法把3张圆形纸片平均分给4个小朋友。并让小组派代表上台展示分的过程。学生通过动手操作,得出两种不同的分法,引申出两种含义,即每人分得1张饼的四分之三,也可以说是3张饼的四分之一,通过这一过程,学生充分理解了3÷4=3/4的算理。
2、使学生清楚为什么要用分数来表示除法算式的结果
在学生理解了分数与除法的关系之后,我有意识的设计了这样几道练习题。1÷3= 8÷9= 2÷6= 让学生把计算结果写在练习本上,比比看谁先算完。结果有的学生一两秒钟就举起了手,而有的学生费了很长时间才写出了计算结果。汇报之后,引导学生思考:1÷3=0.333……与1÷3=1/3 8÷9= 0.88……与8÷9= 8/9有什么区别?学生最直接的回答是:用循环小数表示商计算太麻烦,没有用分数表示快捷、简便。这时告诉学生,以后计算两个整数 相除的商,除不尽时或商里有小数时就用分数表示他们的商,这样既简便又快捷,而且不容易出错。
3、借机引申,为后续学习做好铺垫
第一次向学生介绍分率与数量的区别。如①“把一张饼平均分成4份,每份分得这张饼的几分之几?每份分得多少张饼?”② "把2米长的绳子平均分成7段,每段长是这根绳子的几分之几? 每段长多少米 "③"把4千克盐平均分成5份,每份重量是盐的总数的几分之几 /每份重多少千克?先让学生明白这三道题第一问求的都是“分率”,分率没有单位,都是把总数看做单位“1”,把单位1平均分成若干份,求其中的一份是总数的几分之一,都是用单位“1”除以平均分的份数得到,如前三道题的分率分别是1÷4=1/4 1÷7=1/7 1÷5=1/5。而第二问都是求每份数量是多少,每份数量是有单位的,都是用总数量除以平均分的份数得到,得数一定带单位名称。前三道题第二问的.算法分别是1÷4=1/4(张) 2÷7=2/7 (米)4÷5=4/5(千克)
此处学生理解了分率和每份数量之后,为后面学习分数、百分数应用题做了良好的铺垫作用。
4、让学生自主建构新知识
当学生发现除法中的被除数相当于分数中的分子,除数相当于分数中的分母后,引导学生把数字换成它们的名称:被除数÷除数=被除数/除数。这时候,再让学生在练习本上用字母a、b表示除法与分数的关系。多数学生写下:a÷b=a/b,老师拿一名稍差学生的板书出来,故意表扬这位同学。正表扬却突然转身给这名学生作业后面一个大叉号。正当同学们都诧异的时候?问为什么错了?这时几个思维灵活的先叫起来,说到:“b不能等于0!”我马上抓住这个契机,追问:“为什么b不能等于0?”。我继续用课堂中的例题把1张饼平均分给4个人,每人分得这块蛋糕的1/4为例,让学生说说这个分数中的‘4’表示什么?”“如果把‘4’换成‘0’呢?”学生恍然大悟:分母表示把单位“1”平均分成的份数,平均分成“0”份就没有意义了。在用字母表示分数与除法的关系时----“a÷b=a/b(b≠0)”学生经常会忘记,这里的b不能为0。通过这样分析,学生能够更加深刻地认识到在除法中除数不能为0,所以在分数中分母不能为0的道理。这里并不直接告诉学生在除法中除数不能为0,除数相当于分数中的分母,所以分母也不能为0。而是通过分析一个分数的实际意义让学生充分理解分数中的分母表示平均分的份数,所以分母不能为“0”的道理。
本节课的不足之处:虽然学生对分数与除法的联系学生理解的比较透彻,但是它们之间还有哪些区别没有引导学生总结出来。除法表示两个数相除,是一种运算,是一个算式,而分数既可以表示分子与分母相除的关系,又可以表示一个数值。
分数除法教学反思12
根据教材总复习的教学内容,我对用分数乘除法解决问题复习后,觉得学生对这部分知识掌握的不好,现反思如下:
从本学期进入分数乘除法解决问题的教学时,学生学习用分数乘法解决问题后,在练习训练时就分数乘法算式做题,没有真正理解题中的数量关系的含义。在学习用分数除法解决问题时,学生做练习题时就用分数除法算式做题,也没有理解题中数量关系的含义。我也反复强调过,学生就是不在意。后来分数乘除法的问题同时出几个题后,学生就混淆了,大部分学生就乱列算式。现在进行总复习了,学生还是这样,我就反思怎样让学生学懂这部分内容。我想,我采取以下方法来弥补这部分教学:
一、是多出这类练习题进行训练;
二、是分析这类题时教给学生一个模式,这个模式是:读题——找出已知条件和问题——找出已知条件中与问题相同或相关的句子——找出单位“1”的数量——分析题中相等的数量关系——根据数量关系列算式解答.
比如“一件衣服现在降价2/5”,这句话把( )看作单位“1”的量,数量关系式是:
( )×2/5=( )。
好几位学生都填错了,有的填的是“现价”,有的填的是“降价”,看来学生对“现在降价2/5”这种缩写式的关键句不能够真正理解,弄不清这句话的本来意思,其实只要把这句话扩一扩,就不难找准单位“1”了——“现在比原来降价2/5”,其实这种简略式语句在练习中也有过几次,也都让他们扩过句,但是可能练习得还不够,学生的见识还嫌少。
再结合例题加以说明.
(1)有一条鲸全长是21米,头部占二十一分之五,求头部的长度。
(2)一些米,吃了4吨,是其中的十六分之五,求这些米重多少?
帮助学生复习回忆有关解决这一类问题的基本方法。
“一找”找出关键句。
第(1)题的关键句是:头部占二十一分之五,
第(2)题的关键句是:是其中的十六分之五,
“二列”
帮助学生根据关键句分析了解其中的'具体含义并且列出等量关系式。
第(1)题中的等量关系式是:鲸的全长×二十一分之五=头部的长度
第(2)题中的等量关系式是:全部米的重量×十六分之五=吃掉米的重量
“三算”
帮助学生根据等量关系式列出算式并完成计算。
第(1)题中单位“1”已知,所以我们列一个乘法算式就可以了。
第(2)题中单位“1”未知,这时候题目要求我们设单位“1”为未知数X.
总的来说“分数乘除法解决问题”有6种基本形式:①求一个数的几分之几是多少②求比一个数多几分之几的数是多少③求比一个数少几分之几的数是多少④已知一个数的几分之几是多少,求这个数⑤已知比一个数多几分之几的数是多少,求这个数 ⑥已知比一个数少几分之几的数是多少,求这个数.
分数除法教学反思13
《分数除法(三)》是北师大版小学数学五年级下册第三单元的内容。分数应用题的教学是小学数学教学中的一个重点,也是一个难点。教学中,首先给学生提供探究的平台,让学生独立思考,探究解题方法,在独立探究的基础上,再让学生小组合作讨论,探究不同的解题方法。使学生经历独立探究、小组探究的过程,使学生对 “分数除法问题”的算法有初步的感悟,对这类应用题数量关系及解法有清晰的理解,为进入更深层次的学习做好充分的准备。
1、从已有知识入手,激发学生求知欲。在这节课的教学组织中,教师从学生已有的基础知识入手,很自然的将复习铺垫中的乘法应用题过渡到分数除法应用题。将学生的整个学习活动围绕“操场上的活动”这一活动情境步步展开。这样既有一定的挑战性,又能激起学生学习的兴趣,增强学生的求知欲。
2、充分发挥了教师主导作用和学生的主体作用。本节课从新知的引入,到问题的提出、数量关系的分析、问题的解决,在整个学习活动中学生的'学习空间是宽阔的。在教学中,教师通过学生同伴间相互说说或在组内讨论,然后集体交流,有效地引导学生,起到了组织者、指导者的作用。在给学生思考的空间、学习的时间和交流机会的同时,学生主体作用得到了发挥,极大地鼓舞了学生,使学生个人的成功感获得了极大的满足,有力的促进了学生的数学思维及能力发展,也更激发他们去主动学数学。
3、练习设计具有层次性。巩固练习是帮助学生进一步掌握所学新知的过程。教学中,教师同样应注意巩固练习设计的层次性,使不同的学生进行不同的练习,这样,即满足了吃不饱学生的需求,同时又能使中下学生获得成功感。
4、学生习惯养成较好,学习能力较强。在每一项活动中,学生都能积极的投入到学习中,且学生倾听、交流等习惯养成较好;此外小组合作组织有序、实效性强,学生语言表达完整、精炼,归纳、总结能力较强。
分数除法教学反思14
“分数和除法的关系”主要引导学生探索并理解分数与除法的关系,教材呈现的直观的情境图:把3块饼平均分给4个小朋友,每人分得多少块?分饼的情境,对于五年级的学生来说相当熟悉,不但生活中有,以前的课本知识中也有,生活、学习的经验体会到和以前分饼的问题有相同之处,都是用饼分给一些小朋友,每个小朋友可以分得多少个饼的问题,算式是3÷4=?,有直观的情境图帮助学生思考,有学生知道这个算式的结果是3/4块。借机可以让全体学生直观地体会结果不满1时可以用分数表示,直观帮助学生初步体会分数与除法的关系。五年级数学下册分数和除法教学反思
验证“3÷4是否是3/4块,也就是每人分得是3/4块饼吗”是这堂课的难点,操作能帮助学生理解。方法一是一个饼一个饼地分,将第一个饼平均分成4份,每个小朋友分得其中的一份,也就是分得1/4个饼,用同样的方法分别将第二、第三个饼也分,每个小朋友还是分得1/4块饼,三次一共分得3个1/4块饼,合起来是3/4块饼;方法二是三个饼叠在一起分,平均分成4份,每个小朋友分得其中的一份,也就是每人分得3块的1/4,有3个1/4块饼,即3/4块。操作、图像都是直观的不同手段和形式,同样可以帮助学生理解“3/4块饼”得到的过程,形成丰富、准确的表象。
观察等式3÷4=3/4、3÷5=3/5可以发现分数和除法之间的关系,有了板书的直观支撑,学生很容易知道被除数相当于分数的分子,除数相当于分数的分母,除号相当于分数的分数线;有了板书的.直观支撑,学生很容易知道除法与分数的区别,除法是一种四则运算之一,而分数是一种数,相对于自然数、小数而言的另外一种形式的数。在理解、掌握分数与除法关系的基础上,通过练习让学生进一步沟通分数与除法之间的关系,形成相应的技能。如,先将被除数改写成分子,后将除数改写成分母来的比较简单,且不容易出错等等。板书是可以一直留在学生视线中的直观媒体,便于学生反复观察、比较,可以帮助学生获得相应的结论。
情境图、动手操作、直观演示、板书这些形式和手段,可以帮助学生直观地理解知识和运用知识。“试一试”是让学生把低级单位的单名数换算成高级单位的单名数,题目:7分米=( )/ ( )米 23分=( )/ ( )。学生交流中有两种思路,一是运用分数的意义来解决问题的,把1米看做单位“1”平均分成10份,7分米是这样的7份,所以7分米=7/ 10米;二是低级单位换算成五年级数学下册分数和除法教学反思高级单位时,用除以进率的方法解决问题,即7÷10=7/10(米)。运用分数的意义和规律准确完成单位之间的换算,学生在思考时是离不开直观的支撑的。直观是学生理解的基础,直观是沟通知识的桥梁。
分数除法教学反思15
对于分数乘除法应用题,学生刚刚学完感到很乱,很难!
其实不然,我们都知道这部分知识是有规律可循的,只是学生一一学完之后就乱了,混了,针对这种情况,我把分数乘除法的所有类型全部给出了一组对比练习,内容一样,只是单位“1”不同,经过这样6组的对比练习,学生就很容易发现以前讲的规律的实用性了,进而使他记住这个规律,这一节课下来,大多数的同学都能掌握方法,但在实际应用的过程中,总是不按照讲的方法去思考,特别是后进生,你讲的全能听懂,做题多数不会,你引导这问他就会了,这就说明学生没有良好的学习习惯,不把老师归纳的知识往心里记。
还有一个问题就是计算不准的现象特别严重。列式正确,计算错误的同学不止一两个。所以在今后的教学中,要不断的给他们总结方法,也让他们养成总结规律方法的好习惯,并把计算的训练常抓不懈。
分数除法应用题教学反思6
应用题的教学是小学一至六年级数学教学的重要内容,也是学生学习中出现问题最多的'内容。长期以来一直受到教师们的重视,特别是到了六年级要学习的分数乘除法应用题,更是重中之重,因为它是小学毕业考试的必考内容。一些老教师根据多年来的教学经验总结出一套分析解答分数应用题的方法,如“是、占、比、相当于后面是单位“1”;知“1”求几用乘法,知几求“1”用除法”等等。这些方法看似行之有效,在一定意义上也为那些学习有困难的学生提供了帮助。但长此以往,学生便走上了生搬硬套的模式,许多同学在并不理解题意的情况下,也能做对应用题。然而在这种教学方法指导下获得的知识是僵化的,许多学生虽然会熟练的解答应用题,但却不会在实际生活中加以运用,原因在于他们生活中遇到的问题不是以标准形式的应用题出现,在这里找不到“是、占、比、相当于”,也就找不到标准量,学生因此无从下手。
而我教学时,所说的话并不多,除了“谁能说出这一题的数量关系式?”“谁会解答?”“还有其他的方法吗?”“说说看”“有没有不同的意见”等激励和引导以外,教师没有任何过多的讲解,当学生一次听不明白,需要再讲一遍时,我也只是用肢体语言(用手势指导学生看图)引导学生在自己观察与思考的基础上明白了算理。学生能思考的,我决不暗示;学生能说出的,我决不讲解;学生能解决的,我决不插手。由于我在课堂上适时的“隐”与“引”,为学生提供了施展才华的舞台,使他们真正成为科学知识的探索者与发现者,而不是简单的被动的接受知识的容器。这样的教学,可以更好的调动学生学习的主动性,鼓励学生自己提出问题,解决问题,从而提高学生解决实际问题的能力。
教学中我把分数除法应用题中的例题与“试一试”结合起来教学,让学生通过讨论交流对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力,省去了许多烦琐的分析和讲解。我在教学中准确把握自己的地位。我真正把自己当成了学生学习的帮助者、激励者和课堂生活的导演,凸显了学生的主体地位,体现了生本主义教育思想。
在巩固练习中,我通过鼓励学生根据条件把数量关系补充完整,看图列式、编题,对同一个问题根据算式补充条件等有效的练习,拓展了学生的思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新思维。
【分数除法教学反思】相关文章:
《分数除法》教学反思05-24
分数除法教学反思06-08
分数除法教学反思03-27
分数与除法的教学反思03-25
分数除法的教学反思03-13
分数与除法教学反思04-11
分数除法教学反思范文02-29
《分数与除法的关系》教学反思03-21
《分数除法三》教学反思04-07