面积的教学反思
作为一名到岗不久的人民教师,课堂教学是重要的任务之一,通过教学反思能很快的发现自己的讲课缺点,那要怎么写好教学反思呢?以下是小编精心整理的面积的教学反思,欢迎阅读,希望大家能够喜欢。
面积的教学反思1
学生接受并不太困难,但圆环却要把握住外圆和内圆这个形成圆环的本质问题。
根据以前的经验,也总是通过实例,也就是实际操作,让学生感受到圆环的面积该如何求,但是总有一部分学生不明白为什么要用大圆的面积减去小圆的面积。
总有疑问,如何改进呢?看似简单的问题,有人却总不明白,主要问题还是不明白圆环的概念,另外教学进度过快,也是其中原因之一,过高的估计了学生的理解能力,总是认为这类问题很简单不需要有过多的解释,倒致后来无论如何补进,学生总是不会,学生的第一印象特别深刻,不容易忘记,与其后来的反复强调,不如现在改进,因些,我想这样做,首先是一明确概念。
概念的理解,是呈阶梯状,分层次来理解,首先是初步感知生活的圆环,用课件出示,轮胎,光盘,胶带等,使学生有了初步的印象,第二步画圆环,通过观察或量一量圆环,你有什么发现?此时的学生已有了深度的理解,在些基础上,剪圆环,并出示一些同心圆和不是同心圆的图片,来让学生分辨,明白圆环是同心圆。
第三步则是认识各部分的名称,既大半径和小半径,环宽,并通过练习来巩固认识,练习一些找大圆直径或小圆直径的,半径的等练习,经过上面的一系列的缓慢过程,有实际操作也有课件濱示,还有练习,非常的形象和直观,吸引了学生的注意力,激发了学生学习的兴趣。也为下面的从而为下面求环形的面积作铺垫,而后是求圆环的面积,自然而然,学生肯定也明白了怎样求圆环的面积。
学生在知识的学习过程中,应有亲身体验,获得“做出来”的数学,而不是给以“现成的”数学。有了亲身的体会,学生很容易求出圆环的面积,但是为提高课堂效率,仅此一点往往是达不到预期的效果,接下来我打破常规,不是在理解的`基础上,出示练习题目,进行单纯的练习,这样做学生也会感到枯燥无味,于是我随机提出问题让学生思考,”知道了圆环的面积如何求,如果给出了两个半径可以很简单的求出圆环的面积。
但在实际生活是不是只会给出半径,求环形的面积?如果不是,还可能会出现什么?怎样解决这一问题?”要求小组合作,讨论解决,经过这一过程,学生展示出现了各种类型,事实证明让学生尝试计算,分析验证,比较计算学生正确,并应用大半径、小半径、“环宽”之间的关系练习设计了4道对比练习题,使学生在练习中学会处理大半径、小半径、“环宽”的关系。
通过以上的各个环节,本节的课容量大,既有基础又有拓展,学生的积极性也极高,全体参与,使每个人都有不同程度的发展。
面积的教学反思2
此次,我执教的是《梯形的面积》一课,这节课的教学目标是:
在实际情境中,让学生认识计算梯形面积的必要性;在学生自主探索的活动中,经历推导梯形面积公式的过程;能运用梯形面积的计算公式,解决相应的实际问题。从整个教学过程看,这一目标得到了充分的落实和体现。梯形面积的计算方法的推导,正确计算梯形的面积,作为教学重点、难点,也贯穿于整个教学环节中。
对于本节课,我觉得有以下几点值得思考:
一、尊重学生的认知规律,注重知识的前后联系
我在设计教学时,就关注学生已有的知识、水平和经验。由于学生学过了平行四边形和三角形的面积,而梯形的面积公式推导方法与三角形的面积公式推导方法有很大的相似之处,我就放手让学生自己利用前面的学习经验,推导出梯形的面积公式。
二、以学生的活动为主,实现生生互动。
本节课力求让学生自己去发现和概括梯形的`面积公式,在探究的过程中发展学生思维的创造性。为了达到这一目的,我让学生动手操作,分组合作探究,初步概括出梯形的面积公式。这样,通过“剪、移、转、拼”的活动,让学生真正亲历知识的探究过程。同时,又由于各项活动的设计环环相扣,步步深入,不仅激发了学生探究学习的兴趣,同时学生思维深度和广度也得到了有效的培养。
三、学生自主探索的活动在时间上给以保证
本节课一系列活动的设计是为了学生给充足地用眼看,用手做,用耳听,用嘴说,用脑想的时间和空间,让学生尽情的表现和发展自己,每一位学生都在亲自实践中认识理解了新知。充分体现了教师指导者,参与者的作用。当学生受现有知识的制约,推导概括公式思维停滞时,我进行点拨诱导,促其思维顺畅,变通,最后使学生明确,尽管拼摆的方法不同,但都达到验证了梯形的面积公式的目的。
四、贴近生活实际,让学生成为课堂的主人
新课程标准提倡课堂教学要把数学知识和生活相联系,将数学学习置于生活的背景之中。为了帮助学生更好的理解本节课的内容,教学本节课时,我的整个教学过程始终紧密联系了学生的生活实际,为学生创设了生活化的数学情境。如在导入新课时,我让学生求出生活中的篮球场3秒钟限制区的面积,练习中让学生动手量量梯形学具的数据,再求它的面积,又求出梯形菜地的面积等等,真正做到了数学知识从生活中来,回到生活中去,提高学生分析问题、解决问题的能力,让学生是成为课堂的主人。
这节课的教学已经结束,自己感觉教学过程顺畅,是一节自己比较满意的课。但鉴于我还年轻,对于很多细节,觉得仍需要推敲,相信自己会在今后的教学中不断探索,使自己的教学日趋成熟、完善。
面积的教学反思3
《圆》的教学是小学数学教学的重要组成部分,而圆的面积又是其教学中的重点和难点,它是后面要学习的圆柱和圆锥的基础,其重要性不言而喻。学习本节内容的知识基础是圆的认识以及长方形、平行四边形、三角形、梯形等平面图形面积的推导过程。转化的数学思想是学习本节内容的策略和学习手段。
在学习“圆的面积”公式推导时,我让学生先说说以前学过的平面图形面积推导的过程与方法,进一步渗透“转化”的教学思想,让学生猜想:圆也是平面图形,能不能用转化法,把它转化成以前学过的图形推导出来呢?然后让学生看书,引导动手操作:先把圆平均分成2个半圆,把每个半圆平均分成若干份,展开,交错拼在一起,观察拼成了什么图形?(近似的长方形。)课件演示:再把半圆分成更多等份拼在一起。学生发现:分的`份数越多,拼在一起就越接近长方形。然后学生观察思考:通过这样拼,什么变了?什么没变?拼成后长方形和原来的圆有什么关系?
学生明确了:它们的面积相等,长方形的长=圆周长的一半,宽=圆半径,进而推导出圆的面积计算公式。通过这样的剪、拼、验证,把圆转化成已学过的平面图形(长方形),从而推导出了圆的面积计算公式。通过这一学习过程,学生不仅获取了新知,更提高了学习能力。
面积的教学反思4
在今后的教学中能逐步改进,日趋完善,使自己不断走向成熟。圆环面积是在圆的面积计算基础上进行教学的,圆的面积计算学生接受并不太困难,但圆环却要把握住外圆和内圆这个形成圆环的本质问题。
弗赖登塔尔强调,学生在知识的学习过程中,应有亲身体验,获得“做出来”的数学,而不是给以“现成的”数学。因此,我在认识圆环的设计中安排了经历剪圆环的动手操作过程。剪切的设计目的是使学生通过剪环形的过程知道环形是怎样得到的,从而为下面求环形的面积作铺垫。在这个过程中学生们能自主合作,探究新知,培养了动手操作能力及合作意识。由于学生体验了剪环形的整个过程,所以在我提出怎样求环形的面积时,学生能很快说出“大圆的面积—小圆的面积=环形的面积”。这个过程使我感到在学习关于几何图形的知识,要让学生看一看,摸一摸,做一做。在实际操作中学到的知识比我们直接传授给他们记得要更清楚、牢固。
环形的特征:必须是同心圆,其次,两个圆之间的距离处处相等。在此提出了一个概念“环宽”,让学生在环形图中认识了“环宽”。在此我有效的利用课件进行对比演示加深学生对环形特征的.理解。非常的形象和直观,吸引了学生的注意力,激发了学生学习的兴趣。
虽然,在这个环节耗费了比以往更多的教学时间,但作业反馈很好。没有特别的错误问题出现。看来“做数学”确实能够增进学生对知识的理解和掌握。
例题的处理由于学生有了前面的操作感知,所以例题我采用自学的形式进行,让学生尝试计算,分析验证,比较计算方法,归纳并优化计算公式。
练习环节,是应用公式解决问题的环节。为了让学生正确应用大半径、小半径、 “环宽”,练习时除了设计基础的练习与判断题还设计了4道对比练习题,使学生在练习中学会处理大半径、小半径、“环宽”的关系。
不足之处:
1、练习题没能全部完成,导致没有实现练习的层次性。
其实,我准备了不同的有关环形的练习题,由于在刚开始时为了照顾到大多数学生的学习程度,动手操作的时间给的充足,所以到练习题时时间不充分。设计的一道求半环形面积和一道拓展题没完成。
2、知识点拓展的深度不够。
在认识圆环特征的时候提出了一个概念:“环宽”,只是让学生在圆环上指出了“环宽‘‘但没有让学生将环宽与大半径、小半径进行对比,从而得出了它们之间的联系与区别,(大半径与小半径都是从圆心到圆上的线段;而环宽是小圆上到大圆上的距离,表示环形的宽度。R-环宽=r r+环宽=R)为今后做题提供很好的保障
这节课有许多欣喜的地方,也有令我遗憾的地方。但不遗憾的是我从中发现了自身的缺点,使自己在今后的教学中能逐步改进,日趋完善,使自己不断走向成熟。
面积的教学反思5
本节课教学中,我采用通过“回忆整理——构建网络——综合应用——拓展提高”四个环节的教学,让学生通过回忆、观察、思考、实践等,在自主探索和合作交流中理清旧知识、练习巩固并拓展提升,从而提高学生自主学习和解决问题的能力。
一、创设生活情境,探究“转化”思想。
这一环节,我充分利用现代信息技术,把生活实景与虚拟动画相结合,通过长方形、平行四边形、三角形、梯形的动态画面,以新颖的`设计吸引学生的注意力,点燃学生的求知欲望。
二、通过综合练习,构建知识网络。
复习课的练习题在于精而不在于多,在于题目的思维含量,而不在于盲目地为练习而练习。根据小学生“形象思维活跃,好胜心强”这一特点,我在每一阶段的练习都创设一个问题情境,而且把这三个情境以“游玩数学乐园”为主线贯穿起来,其目的是:利用生动的故事情节,让枯燥的练习变得生动有趣,消减学生的疲惫心理,从而改善了复习课堂的结构;有效构建知识网络。
三、利用分享练习,促进思维拓展。
利用知识之间的紧密联系,在学生对平面几何图形面积公式的网络形成之后,及时抓住时机,引导学生进一步观察、想象、研讨,进一步理解各个图形之间、面积公式之间的内在联系,进一步激发学生的创新精神。
面积的教学反思6
《不规则图形的面积》是新改版的数学五年级上册《多边形的面积》单元里新增的一个内容,虽然新旧教材里都有相同的教学素材,但教学目标要求明显不一样。旧版教材上是作为一个拓展性的实践活动,而新版教材是作为一个必学的例题来安排的,目的就是要让学生学会用数方格的方法估计出不规则图形面积的大小。
以前接触较多的估算教学多数是在数与代数的领域,而今天一课的估算却出现在图形领域,这对学生的思维能力、想象能力是一个不小的挑战。学生在中年级时也曾接触到一些简单不规则图形面积的估算,但那时学的方法就是直接的将不满一格算成半格,学生的'思维深处已经有了一定的方法依托。而现在五年级教材上的估算,还要求学生会估图形面积的上限、下限,知道面积的取值范围,对学生提高了要求。在实际教学过程中,学生数方格是一个难点,由于格数多,学生很容易数错,在这里我没有给予学生一定的方法指导,比如大块由满格组成的不规则图形分割成几个基本简单图形,分块计算,这样情况应该要好得多。可惜当我意识到这个问题时已经太迟了。
这是今天课堂目标缺位的一个方面。教学目标的制定还要更丰满些,不能过多地停留在知识技能的'层面,要重视学生的情感体验。思考题可以不放在本课研究,因为规律是探索费时费心,在课堂上匆匆而过,反而显得对学生不负责任。
面积的教学反思7
1、组合图形的面积是学生学习了长方形、正方形、平行四边形、三角形和梯形的面积计算的基础上进行教学的,是这些知识的发展,也是日常生活中经常需要解决的问题。
2、上课的时候我一开始设计了复习基本图形的面积,为下面计算组合图形的面积打下基础。接着用长方形、正方形、平行四边形等基本图形拼出一些美丽的图案,体会组合图形的特点,为引入组合图形做好了准备,以旧引新顺其自然。又认识了生活中的组合图形,感知数学无处不在,有了这些基础学生很顺利的进入新知识的探究。
3、我认为本课的重点是使学生发现、理解、掌握己酸简单组合图形面积的方法和策略。所以,在探究过程中让学生动手操作,合作探究,理解并掌握了组合图形的面积的计算方法。课堂上首先让学生把图形分成已学过的简单图形,通过画辅助线表示出来,接着让学生来说说自己的分法,学生汇报了不同的分法后,就让学生用自己喜欢的'方法进行计算,然后让学生汇报展示。从中小结优化出无论分割与添补,图形越简单越好,越简单越便于计算,同时还要考虑到分割或填补的图形与所给的条件的关系。
本节课也有一些遗憾,如:有的学生观察组合图形的方法不够灵活,有的学生在计算中总是粗心,有的总忘了公式的正确运用方法,这些不足将在以的的学习中不断改正,使他们能灵活、正确地运用公式求组合图形的面积。
【面积的教学反思】相关文章:
《面积》教学反思05-27
面积的教学反思04-14
《面积》的教学反思09-30
面积的认识教学反思03-24
《圆的面积》教学反思03-27
圆的面积教学反思09-24
《圆环的面积》教学反思04-12
《周长与面积》教学反思04-15
《梯形的面积》教学反思04-14