乐文网>教学资源>教学反思>有理数的加法教学反思

有理数的加法教学反思

时间:2024-07-16 14:07:10 教学反思 我要投稿

有理数的加法教学反思

  作为一名优秀的教师,我们要有一流的教学能力,对教学中的新发现可以写在教学反思中,那么教学反思应该怎么写才合适呢?以下是小编帮大家整理的有理数的加法教学反思,欢迎阅读与收藏。

有理数的加法教学反思

有理数的加法教学反思1

  有理数加法是有理数运算的关键,所以要从以下几个方面加强加法运算的教学。

  (1)注意结合具体情境,体会有理数加法的`意义,并设计不同的方法让学生合作交流,从而归纳有理数加法法则。

  (2)对有理数加法的教学。要严格要求学生遵循以下步骤:第一、先辨别加数是同号还是异号;第二、确定和的符号;第三、计算和的绝对值。即一辩、二定、三算。

  (3)为了提高学生的运算速度并减小运算难度,常采取以下简便方法:

  ①互为相反数结合法

  ②同号结合法

  ③同形结合法(整数与整数结合,分数与分数,小数与小数结合、同分母的)以凑整法。

  ④、拆项法(带分数)

  (4)多让学生搬演,以及时纠正学生的错误,并加以强化。

  (5)对于学困生要多鼓励,并利用学习小组的优势,“以优补劣”。

  (6)由于学生年龄特点,易于遗忘,教师可以采取每隔一段时间就进行强化训练,以增强学生的熟练程度。

  (7)不管学习如何紧张都要坚持以学生为主的教学,坚持以学习小组为主的教学模式。

有理数的加法教学反思2

  有理数加法是有理数运算的关键,在教学过程中,根据新课程理念,让学生动起来,成为课堂的主人,自主探究,合作学习,使每个学生各项能力都能得到发展。在这种理念下,对教学有了更高的要求。教师既要把握教好学中的引导作用,又要了解学生,肯定学生的思维闪光点,活跃课堂学习气氛,调动学习情趣和争强学生学习自信心。下面对有理数加法教学作一简要反思:

  一、注重新旧知识的联系。结合具体情境,体会有理数加法的意义,并设计不同的方法让学生合作交流,从而归纳有理数加法法则。让学生自己探索或与同学共同探讨,合作交流,来体验成就带来的愉悦,提高学习积极性和思维能力。通过合作交流,也可增强团队意识,增进同学友情。

  二、注重学生主动参与。对有理数加法的教学。要严格要求学生遵循以下步骤:

  第一、先确定和的符号;

  第二、再求加数的绝对值;

  第三、分析确定有理数绝对值是相加还是相减。

  三、为了减小运算难度,提高学生的运算速度并,教师可根据自身经验总结一些方法教给学生:

  如:

  1、同号结合法。

  2、互为相反数结合法。

  3、同形结合法(小数与小数结合,分数与分数,整数与整数结合用以凑整)。

  四、多让学生进行板演训练,教师指导学生评析板演结果,对的给予肯定,有毛病的.地方及时指导并更正学生的错误,使学生即学会了知识,又获得了锻炼。

  五、对于学困生要多鼓励,不要歧视他,要用“爱”去感化他。首先让他感觉到自己并不是没有用武之地,让他体验到集体的荣誉感,争强团队意识。其次,对他的一点点进步要及时给与表扬,争强他们的自信心。并利用学习小组,进行传帮带,“以优补劣”。

  六、由于学生年龄特点,爱动爱闹,注意力易于分散,巩固不彻底,易于遗忘,教师可以采取每隔一段时间就进行强化训练,以增强学生的熟练程度。

  七、教师一定要要坚持以生为主以师为辅的教学原则,坚持用合作学习、探讨交流的教学理念,坚持让学生做课堂的主人,坚持以学习小组为主的教学模式,让学生自主学习,提高学生的学习兴趣。完成新课改所要达到的教学目的。

  总之,要关注学生的成长,就必须对每节课的教学不停的反思,总结经验,因为教学不是一天两天的事情,要持之以恒。反思能够发现教学中的不足,总结经验,推陈出新。反思是对以往教学工作的总结,是后续教学的开端。它可以去劣存优,让教师得到进步。反思的过程,是一种总结,也是一种享受,在此过程中,教师的能力会得到发展锻炼,是教师业务更精,能力更强。

有理数的加法教学反思3

  有理数的加法与减法这节课,法则的生成很重要,所以在教学中我注重法则的生成过程,因为也刚刚写了一篇博文就是注重数学知识的形成,对于法则,老师可以直接告诉答案,也可以和学生一起探讨,研究得出法则,对于两种教学方式,我采取更多的时间让学生自己体会法则的生成,注重引导学生参与探索、归纳有理数加法法则的过程,主动获取知识.这样,学生在这节课上不仅学懂了法则,而且能感知到研究数学问题的一些基本方法.我在讲完法则的时候课程已经进行了三十分钟多一点,所以课上例题和练习才用了十分钟,所以又用了习题课上了一节,尽管上的比较慢,但是这种方案减少了应用法则进行计算的练习,所以学生掌握法则的`熟练程度可能稍差,这是教学中应当注意的问题.但是,在后续的教学中学生将千万次应用“有理数加法法则”进行计算,故这种缺陷是可以得到弥补的.如果直接告诉答案削弱了得出结论的“过程”,失去了培养学生观察、比较、归纳能力的一次机会。

有理数的加法教学反思4

  本节课的主要内容是有理数加法的法则和利用数轴表示直观的阐释有理数加法的法则,以学生易于接受的实际生活例子引入有理数加加法。为此,本节课安排较多的时间用于探索加法法则,以学生作为探索的主体,结合学生的实际,因材施教,根据学生的基础,提出不同要求,为每一个学生创造发挥自己的空间,很大程度上调动了学生的学习积极性,特别是学生的'创造性得到了充分的展示,增强了学生的求知欲。这正是新课程理念所倡导的,即课程不再只是知识的载体,而是教师和学生共同探究新知识的过程,只有真正被学生经历、理解和接受了的东西才称得上是课程。

  经过探究、讨论、相互交流,对有理数的加法运算,同学们基本都能理解并掌握,但仍然有的同学不善于利用加法法则来进行运算,而是仍然采用将算式赋予实际意义,再通过自己的生活经验来解决。特别是异号两数相加的和的符号的确定,模糊不清,这可能是由于引例造成的思维定势,所以需要强调计算要以法则为依据,加强用法则的熟练程度。

  一节课下来内容虽然完成了,但是学生的反映情况却不是很好,针对每个环节进行了分析:

  ①用生活中的例子来反映数学问题,能使学生感受到数学的生活化,但是学生对于生活经验与法则之间的本质区别还比较模糊,要注重法则的理解。

  ②在得出法则的过程中,有部分同学仍然没有掌握关键,应该着重强调学生要理解、掌握好同号、异号两数相加的和的正、负符号的确定。让学生多练习,在练习中加深对法则的理解。

  ③在利用数轴上进行加法运算是本节课效果最差的,主要原因有两个方面,一方面是由于学生的数轴基础知识欠缺,另一方面是在教学过程中没有将数轴三要素进行强调,所以使得表示数量的正、负的确定较模糊,这是在教学中的疏忽。

  ④总结课堂内容是让学生进一步加深理解法则的好机会,让学生学会随时总结,随时创新的学习方法:本应该全部让学生自己得出,由于放不开手,一部分由学生得出,另一部分由我得出,这样的效果比较差。在以后的教学中要形式多变,多向其他有经验的教师学习,取长补短,不断完善。

有理数的加法教学反思5

  我校的多媒体教室终于建成了,怀着迫不急待的心情,我尽我所有的电脑知识,精心制作了课件,准备在多媒体教室上一节课来感受一下现代的科学技术所带来的好处。哪知天不遂人愿,我遭遇到这学期以来教学上给我的第一次打击。

  以下是这节课教学中的两个片断:

  片断1

  我问学生:阅读教材第一、二两段,并思考后面的“想一想”,你能用等式类似的表达净胜球的个数吗?

  (很长时间后也没有人作答)

  (我估计学生不明白什么是“净胜球”,马上进行说明)

  我:先赢一个球,再又输一个球,最终赢了球没有?。

  生答:没有。是平局。

  (几乎是异口同声)

  我:把平局记为0,现在你能用等式表达净胜球的个数吗?

  一生答:(-1)+(+1)=0

  好!学生答出了我想要的结果,我马上用课件展示:

  我问:后面的两个算式分别表示什么意义?你能得到这两个算式的结果吗?

  (还好,马上就有人举手,我暗自庆幸)

  一生答:第一个算式表第一场比赛输了3个球,第二场比赛赢了2个球,净胜球的个数为-1,也就是输了一个球。

  一生答:第二个算式表示第一场比赛赢了3个球,第二场比赛输了两个球,净胜球的个数为1,也就是赢了一个球。

  片断2

  为了让学生探索异号两数相加的规律,进行了以下过程

  课件展示:

  我问:观察数轴1,先向东运动3个单位,再和西运动两个单位,结果是怎样的?用算式怎样表示?(向东记为“+”,向西记为“-”)

  一生答:3-2=1

  我问:3减2吗?向东记为正,向西记为负,应怎样表示?

  一生答:3-(-2)=1

  我问:3减负2吗?两次运动的结果用什么运算?

  一生答:3+(-2)=1

  (谢天谢地,总算有人回答对了,我暗自松了一囗气。)

  我问:观察数轴2,先向西运动3个单位,再向东运动2个单位,结果怎样表示?

  一生答:(-3)+(+2)=-1

  我问:两次运动方向一致吗?最后的结果相同吗?

  一生答:两次运动的方向不一致,结果也不相同。

  我问:3+(-2)=1(-3)+(+2)=-1这两个算式结果的符号有何特点?

  一生答:两个结果的符号都与第一个加数的符号相同。

  (糟,学生答出了我不想要的结果,怎么回事,我仔细一看幻灯片,呀,我怎么犯了这样一个非常明显的错误?)

  我问:+3与-3作为加数在两个加法算式中还有何特点?

  一生答:它比2大。

  我问:应该说,正3与负3的什么值都比2的什么值大?

  一生答:绝对值较大。

  …………

  (转了一大圈,终于回到我想要的答案上来了,但此时一节课只有五分钟了,真失败啊!)

  因为时间关系,本课的随堂练习没有时间完成,只刚把异号两数相加的法则归纳出来就下课了,远没有完成计划中的任务。

  自以为应该是很成功的一节课却感到寸步难行。回顾本节课,问题究竟出在哪里呢?通过仔细思考,我认为存在的有以下几方面的问题。

  1.没有正确的把握好教材,是片断1失误的主要原因。

  如情境的引入要恰当。如本节中“净胜球”学生就不懂,如无事先进行补充说明,学生就不懂,导致一节课的进度一拖再拖。必须让学生所接触的`例子和我们的生活密切相关,这样才能更易为学生所接受。回顾这一整节课,其实还有很多可以对教材进行发掘的地方,如在数轴上的运动问题,也可以是让学生在一条直路上运动,这样可能让学生更有兴趣,再用数轴进行抽象,可能效果会更好。

  《平行》这一节中所提到的滑雪运动最关键的是要保持两只雪撬的平行,这一知识点对于我们这里的孩子是非常陌生的,我们都没见过雪撬,更谈不上其技巧了。

  用过新教材的同行们都说,一节课完后不知这节课都在干什么!我也常有这种想法,教材是专家们研究实验过的,专家是干啥的?现在痛定思痛,实际上是我们对新教材把握不够,没有搞清其重难点,没有把握教材的真正要求。虽然我们天天在谈、天天在写“目标”“重点”“难点”,但实际上仅仅是在写而已。实际情形往往是这样:由于我们教学多年,大都只凭我们以往的经验来“把握”教材,凭我们过去所了解的重难点、教学方法、教学模式来引导我们、来确定组织教学,实质是用老教法来教新教材。所以一节课下来我们自己都不知干了些什么!实际上只要我们真正掌握了其教学要求,把握了新教材的内涵、我们的思路清醒,方向明确,就知道自己应该怎样做。

  2.备课粗枝大叶,造成一些不应有的失误。

  如在片断2中,由在数轴上先后两次不同方向的运动,得到两个算式:

  3+(-2)=1(-3)+(+2)=-1

  教师:这两个算式结果的符号有何特点?

  生答:两个结果的符号都与第一个加数的符号相同。

  学生的回答非常正确,而且是经过仔细观察后回答的,但我的本意是要把绝对值较大的数放在不同的位置让学生来观察、归纳的。这实际上是备课工作中的马虎大意引起的,备课缺乏深度。备课以及课堂中要尽量避免人为地给学生带来的错误导向。

  3.教学语言单调、生硬缺乏启发性、激励性。

  课堂上,我十分吝啬“请”“请坐”及一些称颂学生的语言,认为自己天天在说没有必要,在一定程度上就变相抑制了学生的积极性,尤其是对差生而言,他们是进行课堂学习的“学困生”更需要我们的肯定和赞扬,每一次真心的赞扬可能都会给他们带来一次新的进步。

  教学语言是决定教学效果好坏的一个重要环节。教学语言活泼风趣、幽默可以活跃课堂气氛,调动学生的学习热情。常言道“亲其师、信其道”,语言是让学生对教师产生亲切感的一个重要渠道。启发性的语言能使学生顺理成张的回答教师提出的问题,不需要绕太多的圈子,具有点石成金的功效。通俗易懂的语言可以让学生学得轻松自然。激励性的语言则帮助学生树立学习信心、肯定了他们的学习成果,让他们时时能找到自己的价值,尤其是对“学困生”更要让他们找到自己身上的闪光点,提高他们的学习兴趣,充分发挥语言评价的功效。

有理数的加法教学反思6

  今天我和学生一起学习了有理数的加法。课堂环节基本上是这样的:

  一、复习导入

  提问有理数的加法法则并进行了相应练习。发现同学们这部分掌握的非常好,及时鼓励表扬的学生。那么我们这一节课一起看一下加法的运算律在有理数范围内是否也适应呢?我们一起探讨一下:同桌之间进行交流

  (1)(-8)+(-9)(-9)+(-8)

  (2)4+(-7)(-7)+4

  (3)6+(-2)(-2)+6

  (4)[2+(-3)]+(-8)2+[(-3)+(-8)]

  (5)10+[(-10)+(-5)][10+(-10)]+(-5)

  二、组内探究合作交流

  1有理数的加法的'运算律

  2紧跟跟踪练习:要求学生独立完成,并找4号同学去黑板练习,并进行讲解点拨总结规律方法。

  1.12+(-8)+11+(-2)+(-12)

  2.6.35+(-0.6)+3.25+(-5.4)

  3.1+(-2)+3+(-4)+…+20xx+(-20xx)

  三、课堂小结

  谈谈本节课的收获。

  四、当堂检测

  要求学生独立完成,并找同学核对答案。

  【达标检测】试一试你能行!

  1.(-28)+29=29+(-28)利用的是加法的________________.

  2.(-3)+7+(-4)+3=[(-3)+3]+7+(-4)利用的是________________.

  3.若a,b互为相反数,且c的绝对值是1,则c-a-b的值为( ).

  4.计算:

  (1)(-7)+(-6.5)+(-3)+6.5;

  (2)(-0.8)+1.2+(-0.7)+(-2.1)+0.8+3.5;

  (3)(-18.65)+(-6.15)+18.15+6.15.

  五、课堂评价:学科班长评出本节课的优胜小组及个人。

  教学反思:本节课的重点是有理数加法的运算律,难点是:灵活运用加法运算律进行简化运算。课堂中学生通过自主互助交流,师生不断地总结规律和方法,解题技巧,总体来说课堂效果很好。学生都能掌握解题技巧。

有理数的加法教学反思7

  注重过程教学,让学生自主探究,合作学习,使每个学生都能得到发展,这是新课程的核心概念。这种理念下的教学,对教学有了更高的要求。教师既要把握教学中的导向作用,又要发现学生的思维闪光点,及时调整自己的教学反感,活跃课堂气氛,使学生产生浓厚的学习情趣和学习自信心。因此进行教学反思是必要的,这是发展和提高教学能力的重要手段。下面就“有理数加法”的教学谈谈个人的一些思考。

  教学片段:一个人去购物,付出50元,找回32元,问所购物是多少元?

  学生1:18元。

  教师:你是怎样知道的?

  学生1:用50减去32,就是实副付的18元,即50-32=18(1)

  教师:如果我们用“+”“—”号表示找回和付出,如何列式?

  学生2:把付出50元,记为“-50”,把找回32元记“+32”,那么(-50)+(+32)=-18(2)

  教师:很好。(1)式与(2)式有哪些相同和不同之处?

  学生3:(1)式用的是减法,得数是正的;(2)式用的是加法,结果是负的`。

  教师:观察得好。如果我们把管方向用不管方向来描述,请再观察(1)(2)两式,与同桌或前后同学讨论,归纳出你们的结论。

  (同学们经过各种意见的碰撞、争论后)

  学生4:(1)式不管方向,;用的是减法,(2)式管方向,用的是加法。那么,老师提出的问题就是用(1)式描述(2)式。我们讨论的结果是:符号不同的两个有理数相加,用绝对值较大的减去绝对值较小的,取绝对值较大的数的符号。

  教师:好极了!这是有理数加法的一条法则,是大家发现的

  ……

  通过上述片段可见:课堂教学要放得开,但不能采取“放羊式”,教师必须有一定的引导,让学生参与数学结合的“发现”过程,自己探索或与同学共同探讨,合作交流,一来体验成就带来的愉悦,提高学习能力;二来通过协同“作战”,体现集体的力量,增强同学友情。这种做法和效果,是新课标所要达到的。

  要关注学生的成长,就必须对教学不停的反思。反思能够发现教学中的不足,能够总结经验。反思是以往教学的总结,是后继教学的开端。反思的过程,是一种享受,在此过程中,教师的能力一定会得到发展,甚至升华。教学反思《《有理数加法》教学反思》一文

有理数的加法教学反思8

  本课的教学内容在初一阶段属于认知较难的部分,学生对数的扩充还不能快速接受。所以在教学过程中应当循序渐进,让学生有自己的探究、思考、分析、归纳的过程。而不是简单粗暴的直接代替,给出结论。充分采用引导的教学方式,让学生能够自主进行,加以引导和帮助。使学生的自主学习能力以及归纳概括的能力得到提升,积极性高,带动课堂早期教学案例分析报告1.3.1有理数的加法--苏丹气氛。但是初一的学生这方面的能力相对不足,还需一个培养的阶段。有些认知难免有偏差和不足之处,我总结了:

  1、存在的问题

  (1)学生的计算能力有待提高,对概念的理解不透彻有理数加减运算的实质就是运算结果的符号确定和绝对值的加减两个步骤。但学生首先搞不清符号问题,计算类型辨别不清。导致计算错误较多。其次绝对值的加减不知道是何种情况下进行,就是因为对概念法则的理解不透彻。所以这部分知识的学习要让学生多思多练,才能熟能生巧彻底掌握。

  (2)课堂氛围不够活跃,学生没能放开手脚自主学习,我在上课时语言和表情太过严肃、直白,学生不自觉的就受到影响。回答问题不够积极,不敢畅所欲言表达自己的想法。小组活动时,设置了问题和任务但时间稍有些短,学生没能完全归纳总结出自己的想法。在今后的学习中应当大力改进。

  (3)对出现错误的地方要反复强调和加强练习学生出错的地方就是最薄弱的环节,应当在课堂上详细分析和强调。然后针对此类问题多做练习,达到强化巩固的目的。

  2、改进的措施:

  (1)转变师生角色,准确定位,转变课堂教学风格。不越位,营造和谐、平等、民主氛围。教给学生自学的程序和方法。

  (2)创设自主平台,培养良好的'自主学习能力。引导学生积极参与学习。激发自主学习的动机,让学生在学习中寻求快乐,快乐中产生兴趣,兴趣中产生产生求知的渴求欲。给学生成长的空间,提供自主、合作、多方参与的机会,真正让学生成为学习的主人。

  (3)分层教学,给学生设置不同的梯度的题型。体现由易到难,由浅入深的思路。给学生提供难度题,才能体会到解决问题过程中的快乐,享受成功的喜悦。

  (4)培养学生的自信心。很多学生由于自身的基础和能力相当的不自信,羞于表达,没有解决问题的决心和信心。所以要感动学生,感化孩子,树立自信心。

  课堂上平视学生,课余建立良好的互动关系,实施感情教育,助其成才。

有理数的加法教学反思9

  《有理数的加法》是有理数混合运算的第一堂课,所谓万事开头难,由此可见这堂课在接下来的教学中起着非常重要的指向作用。

  下面是我上这堂课的反思总结:

  一。在引入部分和同学们一同探讨书上的问题,采用了让学生相互先探讨的方法,发现学生非常的投入,课堂气氛被充分调动起来了,但后来的教学中没能将这个好气氛维持下去。主要原因是问题的难度一下跨越太大,太抽象,所以在今后的教学中应多多反思,怎样深化问题的`难度,并容易让学生接受。

  二。在一些细节部分还是没有处理到位。比如说解应用题的步骤,应将它的完整步骤都在黑板上演示一下。

  三。在推导有理数加法法则时,学生的回答和我自己的预期不一样,我一味引导他跟随我的思路走,所以卡住了。实际上应该让学生说完他的思路,然后引导他将其他情况补充完整。这个说明我的课堂应变能力不够灵活,所以还须锻炼提高。

  四。整堂课的语言需要改进,应更加精练,简洁。本堂是概念课,对于概念课来说,概念不要重复太多遍,尤其是一些说出来比较拗口的概念,容易混淆,所以当表述的差不多的时候就可以写出来,不必在这个问题上纠缠不清。

有理数的加法教学反思10

  《有理数的加法》是有理数混合运算的第一堂课。正因为万事开头难,可见这堂课在接下来的教学中起着非常重要的指向作用。下面是我上这堂课的总结:

  一.在引入部分和同学们共同探讨书上的问题,采用了让学生相互先探讨的方法,发现学生非常的投入,课堂气氛被充分调动起来了。由于问题的难度一下跨越太大,太抽象,所以在教学中采用了动画解析的过程,更为形象具体,让问题深入浅出,容易让学生接受。

  二.在一些细节部分处理到位。比如说解应用题的步骤,应将它的完整步骤都在黑板上演示一下。电子白板大大的.提高了效率和课堂容量。

  三.在推导有理数加法法则时,学生的回答让学生说完他的思路,然后引导他将其他情况补充完整。这个说明课堂应变能力十分重要,整个课堂中,我注意力十分集中,真是耳听八方,眼观四路。

  四.整堂课的语言需要改进,应更加精练,简洁。本堂是概念课,对于概念课来说,概念不要重复太多遍,尤其是一些说出来比较拗口的概念,容易混淆,所以当表述的差不多的时候就可以写出来,不必在这个问题上纠缠不清。这点需要改进。说,读,写结合,增强记忆。

有理数的加法教学反思11

  七年级新生一开始面对的就是有理数的认识与有理数的运算。有理数的认识,只需通过例举生活中相反意义的量,便可以很快认识负数,进而较为全面认识有理数。而有理数的运算却不是一蹴而就的,其中包括五种运算:加、减、乘、除、乘方。这几种运算中,又以加减法最为基础,最难掌握。

  首先,有理数的加减法,是建立在一定法则之上,但仅靠盲目的背法则来应对加减法,是不可取的'。数学的学习不是文史类的机械背诵,应是在法则制约下,依靠灵动思维解决问题。

  因此,个人认为,在学习加减法之前,就应顾及到将来加减法这一拦路虎来势之凶猛,为扫除这一路障先做好充分准备。这个准备就是:

  一:让学生深刻认识正数、负数、零。长期以来,学生局限于正有理数的运算,对负数的参与会很不适,对负数认知的程度直接影响以后学习有理数的加减法。

  二:数轴的教学。数轴是新生面临的又一新概念。它是许多解决数学问题赖以依靠的工具,也是数形结合思维的最初体现。有了数轴,有理数的加减变得“可视化”。

  三:相反数、绝对值、两个重要概念的掌握。尤其是绝对值,相对较难理解,却是做加减法的重要理论。

  有了以上知识的准备,在套用加减法法则时,不再是简单条文的背诵,学生对枯燥的数学语言和记忆有关法则不再缺乏兴趣,学习便变得是件非常惬意的事情。

  当然,我不主张只要学生生硬依照法则行事,在法则熟透余心后,更应启发学生用自己的思维方法理解加减法法则的内在意义。比如:3+(-5)的值可理解为3与-5正负抵消后的结果,甚至3-5的值也可以理解为3与-5正负抵消的结果。其实掌握了加减中的本质意义,于自然而然当中便得到了结果,至于用了哪条法则,不必去管了!

有理数的加法教学反思12

  一、问题的引入:

  在问题的引入上。新课标规定应从实际情景入手,并且使学生能够对问题产生强烈的求知欲。我采用了敌军对我军进行小规模军事侦察的问题,使学生处在一个指挥官的角色。对问题提出解决的办法,并且在对学生提出的各种情况,作出实际的操作,使学生明白数学在解决实际问题中的应用。我感觉在问题的引入上问题过于简单,使学生思考的范围过于局限。没有出现比较热烈的学习气氛。所以问题的引入应加大深度,应具有一定的挑战性。

  二、问题的探索:

  在问题的探索上,我采用了一个小人在坐标轴上来回行走,产生一种动态效果,使学生在充满好奇心的状态下,在老师提供的`情景下,在具有较多的时间和空间的条件下,亲身参加探索发现,主动的获取知识和技能。但在整个的实施过程中出现了一些问题,比如:在法则的得出上学生的总结出现了一些问题,我再处理时由于怕时间不够充裕所以学生出现的问题我给作出了解答,其实这里应由学生自己来解决,这样对学生能力的提高非常有帮助。

  三、习题的配备:

  整个习题的配备大致是按从易到难的顺序排列的,面向全体学生,采用多种形式,使不同层次的学生都有所得,并且采用循序渐进的方法,使学生对加法法则的理解进一步的加强。在讲解完例题后,让学生互相提问,以促使学生积极踊跃的参与到教学活动中来,创造一种轻松的学习氛围。在最后的习题配备上,让学生对两个加数及和之间的关系作出判断,并且对各种情况作出讨论,达到本节课的一个高潮。促使学生的思路得到进一步的加强。但我总体感觉习题的量不够充足,学生的练习机会较少。

有理数的加法教学反思13

  一、感知生活,导入新课

  (播放一段录象)画面上一个十一、二岁的小朋友站在一个文具店里,销售文具。画外音——小明的父亲下岗后,在学校后门租了一个小门面,开了一间文具店,若是把每月的租金分摊到每天的上午和下午,这样不卖出文具时,小店在这半天也是亏本的。小明是一个懂事和孩子,今年暑假抓紧完成作业后,就给父亲去帮忙。还专门对一周七天的亏盈做了如下统计。

  星期一,上午赚了80元, 下午赚了60元;

  星期二,上午亏了20元, 下午亏了30元;

  星期三,上午赚了80元, 下午亏了25元;

  星期四,上午亏了45元, 下午赚了30元;

  星期五,上午赚了30元, 下午亏了30元;

  星期六,上午不赚不亏, 下午赚了60元;

  星期日,上午亏了20元, 下午不赚不亏;

  老师:同学们,如果赚了30元记为+30元,亏了20元记为-20元,请你们帮小明统计一下这一周每天的亏盈情况。并用数学式子表示出来。

  评析:这个问题比书本上,在一条东西向的跑道上从东走向西,从西走向东的问题来,更贴近学生的生活,学生也更熟悉。学生的学习兴趣更高。问题提出来以后,学生的学习积极性一下就调动起来了。全班没有一个同学不会的。每一个同学都把手举得高高的,生怕老师不喊他们回答。

  学生A:星期一小明父亲的文具店赚了140元,用式子表示为:

  +140 =(+80)+(+60) ……①

  老师: 大家对这个式子有什么看法没有?

  学生A1:有,140要写在(+80)+(+60)的右边。

  老师: 说说你的道理。

  学生A1:星期一的140元收入是由上午60元和下午的80元,两个加数得出的。应该是先要有加数相加后再有和,所以140要写在这个式子的右边。

  老师: 这位同学说得非常好。后面我们也要按照计算的先后顺序正确的书写每一个式子。

  评析:教师看到①式后,没有直接纠正过来,而是让学生思考,发表看法,得出正确的书写形式。

  学生B:星期二小明父亲的文具店亏了50元,用式子表示为:

  (-20)+(-30)=-50 ……②

  学生C:星期三小明父亲的文具店赚了55元,用式子表示为:

  (+80)+(-25)=+55 ……③

  学生D:星期四小明父亲的文具店亏了15元,用式子表示为:

  (-45)+(+30)=-15 ……④

  学生E:星期五小明父亲的文具店不赚也不亏,用式子表示为:

  (+30)+(-30)=0 ……⑤

  学生F:星期六小明父亲的文具店赚了60元,用式子表示为:

  0+(+60)=+60 ……⑥

  学生G:星期日小明父亲的文具店亏了20元,用式子表示为:

  (-20)+ 0 =-20 ……⑦

  评析:由于这些问题都是学生所熟悉的,他们也回答得很正确。正好利用这七个问题引导学生对有理数的加法法则概括和理解

  二、合作交流,解读探究

  老师:再请同学们归纳一下,上面七个式子表示了几种不同的有理数相加,

  同学H:上面七个式子表示了两个正数相加,两个负数相加,一正一负的两个有理数相加,0和一个有理数相加四种有理数相加。

  老师:这位同学的分法较好,同学们还有更好的分法吗 ?

  同学J:我把这七个式子分为三种不同的有理数相加。我认为两个正数相加和两个负数相加就是同号两数相加,其次是一正一负的两个有理数相加,第三是0和一个有理数相加。

  老师:这位同学把两个正数相加和两个负数相加,归纳为“同号两数相加”非常好,那么还有没有更好的分法呢?

  “有”学生K大声地说。

  老师:请你说说看。

  学生K:我把它们分为四种有理数相加:两个正数相加和两个负数相加就是同号两数相加,一个正数相加和一个负数相加应分为两种情况。其中象(+30)+(-30)=0可分为互为相反数相加,另外一种是、不是互为相反数的异号两数相加,最后一种是0和一个有理数相加。

  老师:这位同学分得非常好。特别是把“互为相反数的和等于0”从一正一负的两个有理数相加中分出来是有好处的。互为相反数虽说是一正一负,但它们的绝对值相等,最主要的是,它们的和为0。这为后面的有理数的混合运算提供极大的方便。

  评析:让学生逐步概括出有理数加法的四种情形。特别是把互为相反数的和为0概括为有理数加法的一种类型,既有必要,又能给我们在后面的有理数运算中带来方便。

  老师:四类不同的有理数相加,怎样求它们的和呢?请同学思考回答并举例。

  同学L:同号两数相加,取相同的符号,并把绝对值相加;

  如: (+12)+(+30)=+(12+30)=42

  (-8)+(-23)=-(8+32)=-31

  同学M:绝对值不相等的异号两数相加,取绝对值较大的`加数的符号,并用较大的绝对值减去较小的绝对值;

  如:(+1/3

  )+(- 5/3)=-( 5/3- 1/3)=- 4/3

  (-44)+(+56)=+(56-44)=+12

  同学N:互为相反数的两个数的和为零;

  如:(+6.8)+(-6.8) = 0.

  (+17) + ( -17) = 0

  同学O: 一个数与零相加,仍得这个数.

  如: (-9)+ 0=-9, 0+(+19)=19.

  评析:“有理数的加法”法则通过一个学生非常熟悉的教育资源入手,让学生边想边做,边做边想,轻轻松松地掌握了这个法则。大大降低了课堂教学的难度。

  三、巩固提高(略)

  反思:

  以上就是本人对“有理数的加法”这一节课教学的部分实录。课后我回忆以前对这内容的教学,完全按照课本上的设计,从东西走向入手,得到一个算式,再结合数轴得到结果,然后再得到加法法则。整个课堂教学就是教师带领学生在数轴上从东走向西,从西走到东。学生愿不愿意走,是不是走得懵头转向,只要教师自己知道走就可以了。相比之下,这次我利用小明给他父亲的文具店打工这一教学资源,由于学生对这一件事非常熟悉,所以他们情绪很高,兴趣也很浓。课堂上没有看到学生茫然的情况。我自己也觉得这堂课比以前任何一次都教得轻松:“好象他们都会,我没有为他们做什么似的” 。

  教学中如何按照新课程标准,做到用教材教学,而不必一定只教教材。尽量选取学生熟悉的教学素材,降低教学难度,这是一个永无止境的探究话题。

有理数的加法教学反思14

  《有理数的加法》是有理数混合运算的第一堂课,所谓万事开头难,由此可见这堂课在接下来的教学中起着非常重要的指向作用。

  下面是我上这堂课的反思总结:

  一、在引入部分和同学们一同探讨书上的问题,采用了让学生相互先探讨的方法,发现学生非常的投入,课堂气氛被充分调动起来了,但后来的教学中没能将这个好气氛维持下去。主要原因是问题的难度一下跨越太大,太抽象,所以在今后的教学中应多多反思,怎样深化问题的难度,并容易让学生接受。

  二、在一些细节部分还是没有处理到位。比如说解应用题的步骤,应将它的.完整步骤都在黑板上演示一下。

  三、在推导有理数加法法则时,学生的回答和我自己的预期不一样,我一味引导他跟随我的思路走,所以卡住了。实际上应该让学生说完他的思路,然后引导他将其他情况补充完整。这个说明我的课堂应变能力不够灵活,所以还须锻炼提高。

  四、整堂课的语言需要改进,应更加精练,简洁。本堂是概念课,对于概念课来说,概念不要重复太多遍,尤其是一些说出来比较拗口的概念,容易混淆,所以当表述的差不多的时候就可以写出来,不必在这个问题上纠缠不清。

有理数的加法教学反思15

  关于有理数加法,本人通过教学,以为要注意以下几点:

  一要认真复习绝对值的内容,必须让每一个学生快而准确的说出一个数的绝对值。这是进行有理数加法的基础,因为有理数的加法在确定符号后,都要转化为其绝对值相加或相减。

  其二突出难点“绝对值不等的异号两数相加”。要引导学生反复理解和体会数的符号是怎么定的——与绝对值较大的加数的符号相同。即正数的绝对值大,和为正数,负数的绝对值大,和为负数。定了和的符号后,再怎样定和的绝对值呢?——用较大的绝对值减去较小的绝对值。如(-7) 9= (9-7)=2,(-7) 3=-(7-3)=-4,其中(-7) 9也可写成-7 9,此时要特别防止学生得-16。

  其三,注重利用对比来帮助理解和强化记忆。这里所说的对比包括两方面。一个是同号两数相加,绝对值是相加的,而异号两数相加绝对值是相减的。另一个是两数为正和两数为负的对比。两正数相加得正,两负数相加得负;绝对值较大的正数加绝对值较小的负数得正,绝对值较小的正数加绝对值较大的.负数得负。

  其四,要让学生明白转化的思想,负数参与加法运算后,先判断是否得零(只有互为相反数的两数相加得零)。和不得零,则先定符号,再定绝对值。而定了符号后,在算绝对值,实际上就转化为小学里学过的正数加正数,或大的正数减小的正数了。让学生明白,转化是一种非常重要的又经常用到的数学思想。

  我们老师要特别注意培养学生的符号意识,特别是负号意识。强调学生写负数时必须写出负号。通过这一知识的教学,我更深刻地体会到,在新课改的新理念下,数学教学要尽可能地让学生去做一做从中探索规律和发现规律,通过小组讨论达到学习经验共享,培养合作意识、培养交流的能力、提高表达能力。

  有理数加法是一节重点课,也是一节难点课。引入负有理数后,有理数的加法变得复杂得多了。有的结果为正数,有的结果为负数,有的为零。在数的绝对值的计算上,有的要相加,有的要相减,这对一个初学者来说,确实有一定的难度。除了在教学上注意这些,还要在后面的课内外中,多进行一些练习。

【有理数的加法教学反思】相关文章:

有理数的加法教学反思03-23

有理数加法教学反思02-10

加法教学反思03-28

《有理数》教学反思04-15

有理数教学反思04-01

进位加法教学反思03-24

有理数的乘方教学反思03-31

《有理数的减法》教学反思06-13

有理数的乘方教学反思06-14