乐文网>教学资源>教学反思>《三角形内角和》教学反思

《三角形内角和》教学反思

时间:2024-07-24 08:56:51 教学反思 我要投稿

《三角形内角和》教学反思

  作为一名优秀的人民教师,课堂教学是我们的任务之一,通过教学反思可以快速积累我们的教学经验,如何把教学反思做到重点突出呢?下面是小编为大家整理的《三角形内角和》教学反思,仅供参考,希望能够帮助到大家。

《三角形内角和》教学反思

《三角形内角和》教学反思1

  三角形的内角和一课,知识与技能目标并不难,但我认为本节课更重要的,是通过自主探究与合作交流,使学生经历知识的形成过程,领悟转化思想在解决问题中的应用,以及在探索过程中,培养学生实事求是、敢于质疑的科学态度,同时,在不同方法的交流中,开拓思维、提升能力。基于以上里面,本节课,我也准备引导学生采用自主探究、动手实践、猜想验证、合作交流的学习方法,并在教学过程中谈话激疑,引导探究;组织讨论,适时启发帮助。使教法和学法和谐统一在“以学生的发展为本”这一教育目标之中。

  由于是借班上课,学生对于三角形了解的内容还不够多,所以我才用了直接导入的形式来进入新课,让学生自己探讨什么是三角形的内角,三角形有几个内角,三角形的内角和又是多少呢?来揭示内角和内角和的概念,学生明确了内角与内角和的概念,然后让学生大胆的猜测,三角形的内角和是多少,有的同学猜测是100度、90度、200度,但猜测不等于结论,在这里我追问大家猜测的依据是什么?同学们并没有说出来,于是我引导大家怎样才能知道他们的内角和是多少呢,同学们想到了测量每个内角是多少,然后再求和。我又追问:怎样才能知道每个内角是多少呢?于是同学们想到了量一量,这时让同学们动手进行测量记录数据,但由于学生动手操作前教师没有对操作步骤进行要求,导致同学们在测量时分不清测量的是哪一个角,我及时引导大家把每个内角都标上序号,在进行测量,分别把他们测量的数据填写的`报告单当中,因为这样导致了同学们测量的速度较慢,最终由于时间关系钝角三角形的内角和学生操作完成,在展示成果时没有进行展示,同学们只得到了钝锐角、直角三角形的内角和是接近180度的。如果我能再给学生一点点时间,学生就可以完成了,以后教学中还是应该多多放手,给学生留有先足的动手空间和时间。

  我认为数学课不仅是解决数学问题,更重要的是思维方式的点拔,使数学思想的种子播种在学生的头脑中。由于在量一量、算一算的环节中,学生初验证了三角形的内角和接近180度的,于是引导学生由180度想到平角,让学生探讨交流:怎样才能把一个三角形的三个内角转化平角。撕拼这一环节过程主要向学生展示渗透转化的数学思想的教学目标。四年级学生在以往的数学学习过程中都积累了不少转化的体验,但在这种体验基本上处于无意识状态,只有合理呈现学习素材,才能使学生对转换策略形成清晰的认识。操作之初,一部分学生没有明确操作目的,把三个不同的三角形的角拼在了一起,我在巡视的过程中发现了这一现象后,让学生再次谈操作要求,明确操作目标,之后引导学生如何把三个角从三角形分离出来,从而部分学生想到了撕拼法,一部分学生想到了折拼法,于是我请撕拼法的你同学上台展示后,再让用折拼法的同学展示他们的方法,并给予肯定和评价,至此教学目标基本完成,学生明确知道了:三角形的内角和为180度。为了让学生更深刻的理解这一结论,我设计了一变二,和二变一的图形展示,使学生明确了所有三角形的内角和都是180度,与形状大小无关,如果时间充裕的话我想让学生探一下,增加和减少的度数源于哪里。

  数学规律的形成与深化,不仅靠感知,还要辅以灵活、有趣、有层次的课堂训练,已达到练习的有效性。对此,我设计了有层次的练习,但由于时间只有了30分钟,这一部分没有来得急提供给学生,可以说是这节课的遗憾之一。

  总之,本节课力图学生通过自主探究、合作交流,让学生充分经历知识的形成过程,让学生学会数学、会学数学、爱学数学。在教学过程中,随时会生成一些新的教育资源,课堂的生成大于课前的预设,如何有效的利用生成、有效的进行评价,是我该思考的问题,也是我今后课堂的努力方向。

《三角形内角和》教学反思2

  《三角形内角和》是人教版四年级下在学生掌握了三角形的特性和分类之后的一个内容。三角形的内角和为180°是三角形的一个重要性质。它有助于学生理解三角形三个内角之间的关系,也是学生下一步学习三角函数的基础。通过前面的摸底,我发现百分之八十的学生对三角形的内角和是180度是知道的,但都没有仔细研究过。学生有了这样的基础之后,对教师来说,要展开教学还是有困难的。怎么样才能让学生在整堂课中有所收获呢?我把教学目标定位在让学生经过操作、验证等一系列活动,经历猜测、验证的过程,从而习得知识,并得以巩固。我是这样安排的:

  一、认识内角

  通过回忆旧知,引出钝角三角形,让学生指钝角,接着说另外二个角为锐角,

  教师接着引出这三个角叫做这个钝角三角形的三个内角,并画上相应的角的符号。师接着呈现直角三角形和锐角三角形,让学生找内角,让内角这一概念得到巩固。应该说在这个过程中,内角这个概念是落实得比较到位的,学生也能很快领悟到每个三角形的三个内角分别是什么。

  二、认识并猜测内角和

  通过前一阶段的说课,教研员指出在学习三角形的内角和是180度这一内容

  时,我们首先要告诉学生,或者是形成一个共识,那就是三角形的内角和都是一样的,也就是是一个固定的数,有了这样的前提之后才能让学生进行猜测并验证。所以在设计的时候,我把这二个活动结合在一起进行了。通过让学生观察,猜测哪个三角形的三个内角和相加的'和最大?通过这一问题,既引出了内角和,也抛出了猜测。在这个问题抛出之后,通过和吴校长讨论,我们做了各种各样的预设。在课上,问题一抛下去,学生都说是一样的,是180度。面对这样的起点,我就接着问学生一个问题,你是怎么知道的?第一位学生回答得支支吾吾,也不知道该怎么说,就坐下了。第二位学生说:因为三角板上有过的,相加的和是180度。这个回答也是在我预设之内的,学生对三角形的内角和接触最多的就是从三角板上获得的,所以当学生有了这样的回答之后。我就说,同学们,看一看我们的三角板,你发现它们都是……(直角三角形)那钝角三角形和锐角三角形呢?你们仔细研究过吗?今天我们就来研究一下这个问题。通过这一环节,直接把话题引到了今天学习的内容上来了。

  三、动手测量,验证猜测

  在这个过程中,我分了二个层次,第一:学生量教师给的三种类型的三角形。

  第二:生任意画一个三角形进行验证。让学生经历从特殊到普遍的过程。这是动手操作的过程。因为前面没有试教过,所以在这里花的时间比较多,我自己觉得课上得有点拖,也有点沉闷。但在这一过程中,我也发现了很多的问题。很多学生是运用180度这个结论来量的。比如说他先量了二个角,最后一个角就不量了,直接用180度减去前面二个角,就是第三个角。我想如果这样的话就失去了测量的意义了。在交流的过程中,很多同学都说他们测量的结果是180度,导致另外一些不是180度的学生不敢表达自己的意见。我想面对这样的问题,如果我在交流反馈的时候,再多加一个环节,问你量出来的三个角分别是几度,内角和是几度,这样是不是会减少一些这样的问题。

  四、通过剪剪拼拼,再次验证

  这一环节,我选择了直接告诉学生,剪下三个角来拼一拼,看看有什么发现。

  通过了解,其实有一些学生是知道的。(在听课的过程中,旁边的四年级老师告诉我,他们以前组织过这样的活动,让学生剪角、拼角,所以一些学生有这样的基础)因为事先没有了解,所以我低估了学生的能力。如果我选用抛问题的方法,可能会出现一些亮点。当然这也只是一小部分学生而已,其实在实际的操作过程中,在我电脑演示了剪与拼的过程之后,再让学生自己任意剪一剪、拼一拼的时候,还是有很多学生是不会拼的,不知道三个角该怎样放。我想在这个过程中,我在电脑演示的时候,如果再多加引导一下的话,可能在操作的过程中,更多的学生能够参与进来。

  整堂课下来,我自己觉得上得很沉闷,由于操作活动比较多,学生的注意力也不是非常集中,当然这和我自己有很大的关系,因为没试教,心里紧张,也因为自己没有经验,课堂气氛没能调节得很好。幸亏有幸听了另外二位老师的课,感觉受益匪浅。特别是徐老师的设计,给了我很大的启示。在自己的课中,我就觉得虽然验证的过程很严密,从特殊到普遍这样一个过程,但是留给学生思考的空间特别少,学生只是进行一些操作。而徐老师通过对直角三角形的验证,继而请学生选择自己喜欢的方法对钝角三角形和直角三角形进行验证,我认为这样设计比我这样设计要好,学生的学习主动性也一下子体现了出来。在验证的过程中,也是方法的运用。总而言之,在上课的过程中,给了我一次学习的过程,在教案设计时,该怎么样把每一个环节落实到位,怎么样说好每一句话,预设好每一个环节。在听课的过程中,让我有了茅塞顿开的感觉,当然这些离不开执教者对教材的深入理解,所有这些,都让我这个新教师感动……

《三角形内角和》教学反思3

  “三角形内角和”是人教版数学四年级下册的一节探索与发现课,让学生在学习了三角形的特征、高以及三角形分类的基础上,进一步研究三角形三个角的关系。本节课学生对知识点的掌握还不错,但是,这一节课还有很多不足之处,需要加以改进:

  一、优点:

  1、教学设计不错,环节紧凑,思路清晰。

  2、重视操作过程,时间把握得好。本节课用了大量的时间来让学生做小组实验,从而让他们自己感知三角形内角和是180°,印象深刻。

  3、能注意前后照应,解决了前面的疑问。在讲授新课前,设置一个疑问“为什么同一个三角形不能有两个直角?”以此来吸引学生,找出三角形内角和的特性。在掌握了三角形内角和是180°后,再次把问题提出来,让学生解决。

  4、板书巧妙,一步步引入课题。先是让学生复习“三角形”的定义,接着简单说明什么是“三角形内角”,最后再讲授三角形三个内角度数的和叫做“三角形内角和”。

  5、课堂纪律好,气氛活跃,学生踊跃积极。学生在小组活动时,活跃而有序,上课时能认真听讲,积极举手。同时,实行小组评价更是发挥了学生的主动性。

  6、求三角形内角和的方法,一个比一个直观、生动。从量一量、算一算,到剪一剪、折一折,让学生更容易感受到三角形内角和是180°。

  7、练习题设计得比较好,特别是判断题,都是学生平时容易出错的题目,在课堂上用比较直观的课件显示出来,让学生的印象深刻。组合题也很有灵活性,先是找出能组成三角形的度数,然后根据度数判断出是什么三角形。

  8、能尊重学生的意见,有的小组没有在算一算的时候,没有得出180°的`结果,老师能够分析其中的原因。

  二、不足之处:

  1、在老师给出“画有2个内角是直角的三角形”的任务时,学生明显是画不出来。但是教师也可以把学生失败的作品展示出来,照应之后的讲解。而不能一带而过。

  2、如果量一量的方法,不能让人信服,要在后面打个“?”,等到解决疑问后,再去掉。

  3、在进行剪一剪、折一折的活动时,老师应该先用板书上的三角形来示范一次,告诉学生应该怎么做。因为有些学生折不出来。拼的时候,也有出错。

  4、把三角形拼成平角后,要用直尺或者是量角器测量一下,看看得出的图形是不是平角,要用严谨的态度对待,不能光用眼睛来判断。

  5、老师注意提醒学生读题的时候要规范,要读出度数单位,这很好。但是,在做题练习时,应该请一两个学生在黑板上做,这样也便于教师提醒学生,在书写时,也要注意写上度数单位,强调格式。

《三角形内角和》教学反思4

  我执教的《三角形内角和》一课是人教版义务教育课程标准实验教材四年级下册第五单元的内容,是在学生学习了《三角形的特性》以及《三角形三边关系》,《三角形的分类》之后进行的,在此之后则是《多边形的内角和》,它是三角形的一个重要特征,也是掌握多边形内角和及解决其他实际问题的基础,因此,学习和掌握三角形的内角和是180°这一规律具有重要意义。

  一、创设情境,营造探究氛围。

  怎样提供一个良好的探究平台,使学生有兴趣去研究三角形内角的和呢?爱因斯坦说过:“问题的提出往往比解答问题更重要”,因此这节课在复习旧知“三角形的特征”后,我引出了研究问题“三角形的内角指的是什么?”“三角形的内角和是多少?”“你猜三角形的内角和是多少度?你是怎么猜的?这个问题一抛出去马上激发学生的学习热情。由于学生在平时使用三角板时已经若隐若现地有了特殊的直角三角形的内角和是180度这一感觉,因此本环节,要求学生猜一猜三角形的内角和是多少,并说说是怎么猜的,以激发学生已有知识经验,并体会到猜想要合理且有根据,同时也为推理验证的引出作必要的铺垫。

  二、操作验证,突破重难点,积累数学活动经验。

  《标准》指出:“教师应激发学生的积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”其实三角形内角和是多少?大部分的学生已经知道了这一知识,所以很轻松地就可以答出。但是只是“知其然而不知其所以然”,所以我觉得本课的`重点就是要让他们知道“知其所以然”,因此接着就让学生分组讨论:有什么办法可以验证得出这样的结论。学生会提出度量、折一折的方法,然后让学生拿出课前准备的锐角三角形、直角三角形、钝角三角形以小组为单位有选择的用度量的方法或者用折一折的方法,通过小组合作交流,让学生各抒已见,畅所欲言,鼓励学生倾听他人的方法,从中获益,增加了学生的合作探究精神,有意识地培养学生逻辑推理能力,增强了语言表达能力,并潜移默化中渗透了一个重要数学思想―――转化思想。

  在猜测后先独立思考验证的方法,再进行全班交流,给学生充分的活动时间和空间,让学生动手操作,使学生在量、剪、拼、折等一系列操作活动中发现了三角形内角和是180°这个结论。在探索活动前,交流如何使研究样本具有代表性和全面性与如何分工做到操作省时高效这两个问题,培养学生严谨、科学正确的研究态度,让学生在活动中积累基本的数学活动经验,为后续的学习提供了经验支撑。

  三、练习设计,由易到难

  研究是为了应用,在应用“三角形内角和是180°”这一结论时,第一层练习是基础练习题:已知三角形中两个内角的度数,求另一个角;已知一个角的度数(等腰三角形中顶角或底角的度数),让学生应用结论求另外的一个内角的度数;一个角的度数都不交代,给出三角形的特征(等边三角形),求这个三角形每个角的度数。第二层练习是让学生用学过的知识解决生活中实际问题的内角度数。第三层练习是拓展深化练习,让学生运用已有经验去判断思索,如:“大三角形的内角和比小三角的内角和大”对吗?“你能画出两个直角三角形吗?为什么?等问题。体现习题设计的坡度性与层次性,让不同的学生都各有所收获,关注了学生差异问题。

  四、教学中存在不足

  在教学中,由于我对学生了解的不够充分,让学生自己想其它的验证方法,难度较大,浪费了大量时间,拖课了。因此在设计教案时要深入了解学生,反复研究切合实际的教学设计,这是我在以后的备课中要注重的地方。

《三角形内角和》教学反思5

  本节课的教学目标是:1.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

  2.让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

  3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

  教学重、难点是让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

  本节课教学设计符合新课程理念,转变学生的学习方式,能让学生以小组合作的形式进行问题的探索与研究,学生在整节课中学得轻松。整节课的教学设计,条理清晰,层次清楚,学生思维活跃,教学一开始从学生熟悉的三角板抽象出特殊的三角形探讨三角形的内角和是180°,接下来很自然地引导学生探讨所有的三角形的内角和是不是也是180,过渡自然且有吸引力。

  在学习活动的过程中,先让学生进行测量、计算,但得不到统一的结果,再引导学生用把三个角拼在一起得到一个平角进行验证。这时,有部分学生在拼凑的过程中出现了困难,花费的时间较长,在这里用课件再演示一遍正好解决了这个问题。练习设计也具有许多优点,注意到练习的梯度,并由浅入深,照顾到不同层次学生的需求,最后的游戏也很有趣味性,调动所有学生的积极性。让学生在游戏中除疲倦激发兴趣,拓展学生思维。

  本课的不足之处是习题的设计受课本资源的限制,没有大胆突破教材,充分利用生活资源。让学生利用学过的`知识解决生活中常出现的问题,更能使学生体会到数学不仅来源于生活,学习数学的目的更是为了解决生活中的问题,体会到学习数学的重要意义。

  在整个教学设计中,本着“学贵在思,思源于疑”的思想,不断创设问题情境,让学生去实验、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念和推理能力。

《三角形内角和》教学反思6

  “三角形的内角和”是三角形的一个重要性质,是“空间与图形”领域的重要内容之一,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。

  《三角形的内角和》是人教版数学四年级下册第五单元的一节课,是在学生学习了三角形的特征以及三角形分类的基础上,进一步研究三角形三个角的关系。课堂上我注意留给学生充分进行自主探究和交流的空间,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。

  在课堂中,我引导学生小组合作,动手验证。通过小组内交流,使学生认识到可以通过多种途径来验证,可以量一量、撕一撕、拼一拼、折一折、算一算。在明确验证方法后,学生在小组内通过动手操作、记录、观察,验证三角形的.内角和是否为180°。之后我组织学生在全班汇报交流,有的小组通过量一量、算一算的方法,得出三角形的内角和是180°或接近180°(测量误差);有的小组通过撕一撕、拼一拼的方法发现:各类三角形的三个内角可以拼成一个平角。还有的小组通过折一折、拼一拼的方法也发现:各类三角形的三个内角都可以拼成一个平角。此时我利用课件进行动态演示,在演示中进一步验证,使学生在小组合作、自主探究、全班交流中获得了三角形的内角和的确是180°的结论。这一系列活动潜移默化地向学生渗透了“转化”的数学思想,为后继学习奠定了必要的基础。

《三角形内角和》教学反思7

  《三角形的内角和》在学生学习了三角形的特征以及三角形分类的基础上,进一步研究三角形三个角的关系。让学生猜测-质疑-验证得出“三角形的内角和等于180°”,引导学生观察、实验、猜测,逐步培养学生的逻辑推理能力。

  爱因斯坦说过:“问题的提出往往比解答问题更重要”,上课开始,我通过观察长方形的内角和连接对角线把它分成两个直角三角形让学生猜测三角形的内角和是180°,然后质疑:那是不是所有的三角形的内角和都是180°呢?这个问题一抛出去马上激发学生的学习

  热情。接着就让学生来验证三角形的内角和。验证过程分两部分来进行,先通过量一量、算一算的方法让学生验证各类三角形的内角和,一是加深对三角形内角和的'理解就是三个内角的度数之和,二是让学生在小组内通过动手操作、记录、观察,验证三角形的内角和是否为180°。之后我组织学生在全班汇报交流,没有以小组的形式展示,给学生交流的空间太小没有达到小组合作的真正目的。再让学生通过拼一拼、折一折的方法来发现各类三角形的三

  个内角都可以拼成一个平角,从而得出三角形的内角和的确是180°的结论。汇报展示这个环节只是口头叙述的形式描述验证的结果,若先还原原图,再展示验证过程与结果效果更佳。

  探究新知是为了应用,这节课在练习的安排上,我注意把握练习层次,共安排三个层次,由易到难,逐步加深。第一层练习是已知三角形两个内角度数,求另一个角。练习内容的安排从知识的直接应用到间接应用,数学信息的出现从比较显现到较为隐藏。第二层练习是判断题,让学生应用结论思考分析,检验语言的严密性。第三层是解决多种类型三角形的内角问题,有等边三角形、等腰三角形、直角三角形,根据自身特点来解决问题。

  本节课我采用逐步设置疑问,让学生动手、动脑、动口,积极参与知识学习的全过程,渗透多观察、动脑想、大胆猜、勤钻研的研讨式学习方法,培养学生学习数学的兴趣,给学生提供更多的活动机会和空间,使学生在参与的过程中得到充足的体验和发展。

《三角形内角和》教学反思8

  探究三角形内角和的过程的时候,我注意鼓励学生通过动手操作、小组合作的方法去量,得到三角形的内角和都在180°左右。

  一、“给学生一些权利,让他们自己选择;给学生一个条件,让他们自己去锻炼;给学生一些问题,让他们自己去探索;给学生一片空间,让他们自己飞翔。”我记不清这是谁说过的话,但它给我留下深刻的印象。

  “是否任何三角形内角和都是180°?”这个猜想如何验证,这正是小组合作的契机。通过小组内交流,使学生认识到可以通过多种途径来验证,可以量一量、拼一拼、折一折,让学生在小组内完成从特殊到一般的研究过程。首先让学生计算出已经测量出的三角形内角和,面对有些小组的学生量出内角和的度数要高于180°或低于180°,学生讨论一下有哪些因素会影响到研究结果的准确性。

  再引导学生思考有没有更简单快捷的方法验证三角形内角和是180°呢?带着这个疑问,小组内讨论,之后用自己喜欢的方法试一试。通过学生自己撕各类三角形,再把各个角拼在一起,从而验证了三角形的三个内角都能拼出一个平角,由此获得“三角形的内角和是180°”的结论。接着让学生合作,进行折叠三角形,算出折成后的三角形的内角和仍然为180°,再一次明确:不论三角形的大小如何变化,它的内角和是不变的。通过动手操作,为学生创设了解决问题的情境,以学生动手操作为主线,引导学生建立解决问题的目标意识,形成学习的氛围,给学生更多的自主学习、合作学习的机会,促进学生的主题参与意识。同学们通过自主实践、合作探究完成了本节课的教学任务。

  二、练习设计,由易到难。

  在应用“三角形内角和是180°”这一结论时,第一层练习是已知三角形两个内角的`度数,求另一个角。第二层练习是已知等腰三角形中顶角或底角的度数,让学生应用结论求另外的内角度数。第三层练习是让学生用学过的知识解决四边形、五边形、六边形的内角和。练习设计提问体现开放性,“你还知道了什么”,让学生根据计算结果运用已有经验去判断思索。

  三、发挥多媒体的教学辅助作用

  在用“折”的方法验证三角形内角和是180度时,虽然发言的学生边说、边演示,但大多数学生在实际操作时,还是没有取得成功。准确地找到三角形的中位线,使折纸的关键,但对于学生来说,先找中位线,再进行对折,再验证三角形内角和是180度,这却不是一件容易的事,因为学生没有对中位线的概念没有准确地认识。针对学生的这个特点,我选择不用语言讲解,而是利用多媒体直观演示。让学生在仔细观察、用心感悟的基础上,动手操作,给学生操作以正确的指引,保证学生体验成功,提高了教学效率。另外,参与学生的探究活动是我教学的一大特点,询问、点拨、交流,使学生都能积极参与到合作学习之中,更好地完成教学任务。

  四、存在的不足

  在教学中只是让学生体验到各种类型的三角形和大小不同的三角形基本图形的内角和等于180度,在一些练习中出现了求变化得到的三形内角和时出现了认知的盲点,如,如两个完全一样的小三角形拼成一个大三形角形内角和等于多少?还有部分学生出现等于360度的现象,这些如能在课堂上让学生练习,学生对于三内角形内角和的性质的认识会更深入。

《三角形内角和》教学反思9

  学生在学习了三角形的特征以及三角形分类的基础上,进一步研究三角形三个角的关系。根据教学目标和学生掌握知识的情况,课堂上我围绕以下几点去完成教学目标:

  一、创设情境,营造研究氛围

  怎样提供一个良好的研究平台,使学生有兴趣去研究三角形内角的和呢?为此我抛出大、小两个三角形争吵的情境,让学生评判谁说的对?为什么争吵?导入课引出研究问题。“三角形的内角指的是什么?”“三角形的内角和是多少?”激发学生求知的欲望,引起探究活动。我在研究三角形内角和时,没有按教材设计的`量角求和环节进行,而是从学生熟悉的正方形纸的内角和是360°入手,再把正方形纸沿着对角线剪开后会怎样呢?猜想一下其中的1个三角形的内角和是几度?学生很快得出一个直角三角形内角和是180°。猜测以下是不是各种形状、大小不同的三角形内角和都是180°呢?再组织学生去探究,动手验证,并得出结论。生在不断的发现中很自然地得到“三角形内角和是180°”的猜想。这样既使学生在这个探究过程中得到快乐的情感体验,又使学生有高度的热情去继续深入地研究“是否任何三角形内角和都是180°”。

  二、小组合作,自主探究

  任何一项科学研究活动或发明创造都要经历从猜想到验证的过程。“是否任何三角形内角和都是180°”,这个猜想如何验证,这正是小组合作的契机。通过小组内交流,使学生认识到可以通过多种途径来验证,可以量一量、拼一拼、折一折,让学生在小组内完成从特殊到一般的研究过程。然后再小组汇报研究结果以及存在问题。教师根据学生实际情况充分把握好生成性资源,让学生认识到有些客观原因会影响到研究的结果的准确性。例如,有些小组的学生量出内角和的度数要高于180°或低于180°,先让学生讨论一下有哪些因素会影响到研究结果的准确性。

  三、练习设计,由易到难

  研究是为了应用,在应用“三角形内角和是180°”这一结论时,第一层练习是已知三角形中两个内角的度数,求另一个角。第二层练习是已知等腰三角形中顶角或底角的度数,让学生应用结论求另外的内角度数。第三层练习是让学生用学过的知识解决四边形、五边形、六边形的内角和。练习设计提问体现开放性,“你还知道了什么”,让学生根据计算结果运用已有经验去判断思索。

  四、教学中存在不足

  在教学中,由于我对学生了解的不够充分,让学生自己想其它的验证方法,难度较大,浪费了大量时间,使教学任务不能完成,练习较少,新知没有得到充分巩固,以后应引起重视。在设计教案时要了解学生,深入教材,精心设计。

《三角形内角和》教学反思10

  三角形内角和知识,其实早在四年级上学期,角的单元教学中就已经涉及到了。只是做了介绍,这学期把它拿出来专门学习。

  首先,我对三角形的分类进行了复习,让学生们对知识产生连续性。讲解内角和内角和的定义。再复习平角的知识,为后面的拼三个内角和的结论做铺垫。

  先引入长方形和正方形,让学生算他们的内角和,接着展示一个长方形,被一把剪刀沿一条对角线剪开,分成了两个三角形,再让学生们讨论三角形的内角和又是多少?学生很快反应说,是180度,因为360÷2=180。既然给出了答案,我就跟着提出问题:是不是所有的三角形的三个内角和一定是180呢?给学生指出了探究学习的目标。

  通过测量自己手中的三角板,学生们答案是肯定的,但有的学生就提出来了不同意意见。她认为手中的三角板很特殊,不能代表所有的三角形,结论还不能成立。这样就让课堂教学到达了最关键的阶段。所以我任意的列举了一个锐角三角形、直角三角形和钝角三角形,准备让学生们自己动手量量,然后再总结结论。但又考虑学生在实际操作时,对量角的方法有遗忘或出差错,影响教学的时间和效率,我放弃了学生操作的环节,改成我用量角器量,点学生来给我读度数的方法。

  效果比预期的要好,学生们都争先恐后的想上前读度数,所以都特别积极。有时为了1-2度的误差而争论不休,有时也为自己精确度数而喝彩,学生们不仅复习了量角器量角的方法,更是验证了三角形的内角和度数。教学一气呵成,学生们掌握的情况非常好。

  想不到我一个小小的`改变,竟会对教学产生不可估计的效果,不仅可以点燃他们求知的欲望,更可以激发他们特有的童趣,让整个数学课堂散发着一种催人奋进的热情。数学课活了起来,知识动了起来,学生们的脑筋更是转了起来,课堂效率也升了起来。

  这节课,不仅让我感受了教学中创造的“意外”精彩,更让我重新定位了四年级学生的看法。虽然带了快一年的四年级数学,但心里总是觉得他们太顽皮、太马虎、不听话,讲过和做过很多遍的习题,还是一直再错;强调过很多次的要求,还是毫不注意;早已墨守成文的规定,也是明知故问,现在想想,这是他们的年少无知,也正是他们的纯真可爱。毕竟他们只是一群10岁大的孩子,现在的他们具有最天真无邪的思想和无忧无虑的世界,这也是我们每一个人都曾拥有过的美好回忆。

  同时他们身上隐藏着许多“宝藏”,只要我们善于寻找和发现,这些“宝藏”将会带来无限财富。

  教学让我有了新发现,相同的知识,不同的教法,效果也不相同。有时“意外”会带来惊喜;有时“安排”会失去精彩。确实,这不禁让我想起了一句广告:惊喜无处不在。

《三角形内角和》教学反思11

  “合作探究,实验论证”生动地诠释了新教育的基本理念,我在本节课新知识传授时很好的把握三个环节。

  一、通过两个三角形因为内角和大小吵架导出新课,提出问题到底是谁的内角和大,激发了学生的求知欲,和学习兴趣。

  二、让学生先猜想内角和的大小。教师引导学生讨论验证方法,掌握要领。上课开始,我通过提问三角板中每个角的度数以及每块三角板的内角的和是多少?初步让学生感知直角三角形的内角和是180,然后质疑:这仅仅是一副三角板的内角和,而且也是直角三角形,那是不是所有的三角形中的三个内角的都是180°呢?这个问题一提出去就激发学生的探究学习的热情。因此接着就让学生讨论:有什么办法可以验证得出这样的结论。学生提出度量、折一折、拼一拼等方法。

  三、动手操作验证猜想。要求学生小组合作,动手验证。通过小组内交流,使学生认识到可以通过多种途径来验证,可以量一量、撕一撕、拼一拼、折一折。在明确验证方法后,学生在小组内通过动手操作、记录、观察,验证三角形的内角和是否为180°。之后我组织学生在全班汇报交流,有的小组通过量一量、算一算的方法,得出三角形的内角和是180°或接近180°(测量误差);有的小组通过撕一撕、拼一拼的方法发现:各类三角形的三个内角可以拼成一个平角。还有的小组通过折一折、拼一拼的方法也发现:各类三角形的三个内角都可以拼成一个平角。此时我利用课件进行动态演示,在演示中进一步验证,使学生在小组合作、自主探究、全班交流中获得了三角形的内角和的确是180°的`结论。

  四、练习设计,由易到难。

  这节课在练习的安排上,我注意把握练习层次,由易到难,逐步加深。在应用“三角形的内角和是180°”这一结论时,第一层练习是已知三角形两个内角度数,求另一个角。第二层练习是判断题,让学生应用结论思考分析,检验语言的严密性。第三层练习是让学生用学过的知识解决,在没有告知直角三角形的另一个角时,如何求出第三个角。

  通过一节课的学习,同学们基本掌握三角形内角和的知识,并能运用知识点进行习题练习。小组合作也激发了学生们的学习兴趣,效果不错!

《三角形内角和》教学反思12

  我在讲“三角形的内角和”时,开始就由求两个我们已经熟悉的直角三角尺的内角和入手。在学生的认知结构中,他们已经知道了两块三角尺的内角和是180°了。在此基础上,引导学生猜测,其他三角形的内角和是不是也是180°。这也正是我本节课要与学生共同研究的问题。这时学生想说为什么又不知怎么说,又因不知道怎么说而感情特别激动。处于这种状态的学生注意力特别集中,学习兴趣异常高涨,到了一触即发的地步。于是我让他们将课前准备好的三角形拿出来进行研究,体现学生的主体意识与参与意识。当学生通过量一量、折一折、撕一撕之后找到自己的验证方法时,他们体验了成功,也学会了学习。在这节课中我们共同找到了几种验证三角形内角和是180°方法。学生们拿着他们手中的三角形,讲述自己的验证方法,虽然有的方法很不成熟,但也可以看出这个过程中,渗透了他们发现的乐趣。有的学生将三角形的'三个角都撕下来拼接到一起,有的同学将三角形的三个角沿着三角形的中位线折到一起……

  但试想一下,如果我上课之初,就告诉孩子三角形的内角和为180°,并且告诉孩子我的验证方法,即便告诉的方法再多,再详细,他们学到的也只是我的有限的方法,而且是老师的方法,不是自己发现的方法。

  不过在进行动手操作的时候,有些小组没有抓到很好的要领,而我也没给予及时的指导;或者说,因为时间的关系,我的指导没有很好的说清楚,导致个别小组动手的时候不是很清楚。

  对于活动性课程,我的把握不是很到位。在活动中出现的小问题,有的时候我经常会不知所措,不知道应该怎样及时解决,这个是我今后要努力的方向。

《三角形内角和》教学反思13

  这节课作为四年级下册中三角形的一个重要组成部分,它是学生学习三角形内角关系和其它多边形内角和的基础。即使在以前没有这部分内容,大部分教师在课后也会告诉学生三角形的内角和是180度,学生容易记住。本节课我具体抓住以下2个方面。

  1、为学生营造了探究的情境。在数学教学中,教师应提供给学生一种自我探索、自我思考、自我创造、自我表现和自我实现的实践机会,使学生最大限度的投入到观察、思考、操作、探究的活动中。教学中,我在引出课题后,引导学生自己提出问题并理解内角与内角和的概念。在学生猜测的基础上,再引导学生通过探究活动来验证自己的观点是否正确。当学生有困难时,教师也参与学生的研究,适当进行点拨。并充分进行交流反馈。给学生创造了一个宽松和谐的探究氛围。

  2、充分调动各种感官动手操作,享受数学学习的快乐。在验证三角形的内角和是180度的过程当中,大部份同学都是用度量的方法,此时,我引导学生:180度是什么角?我们能否把三个内角转化一下呢?经过这么一提示,出现了很多种方法,有的是把三个角剪下来拼成一个平角。有的用两个大小相等的直角三角形拼成一个正方形,还有的是用折纸的方法,极大地调动了大脑,就连平时对数学不感兴趣的学生也置身其中。充分让学生进行动手操作,享受数学学习的乐趣。

  一、教学现状的思考。

  我从知识与技能,教学过程与方法,情感态度价值观三方面拟定了本节课的教学目标:

  1。通过量一量算一算拼一拼折一折的小组活动的方法,探索发现验证三角形内角和等于180°,并能应用这一知识解决一些简单问题。

  2。通过把三角形的内角和转化为平角进行探究实验,渗透"转化"的数学思想。

  3。通过数学活动使学生获得成功的体验,增强自信心。培养学生的创新意识,探索精神和实践能力。

  (三)教学重,难点

  因为学生已经掌握了三角形的概念,分类,熟悉了钝角,锐角,平角这些角的知识。对于三角形的内角和是多少度,学生并不陌生,也有提前预习的习惯,学生几乎都能回答出三角形的内角和是180°。在整个过程中学生要了解的是"内角"的概念,如何验证得出三角形的内角和是180°。因此本节课我提出的教学的重点是:验证三角形的内角和是180°。

  二,说教法,学法。

  本节课主要是通过教师的精心引导和点拨,学生在小组中合作探索,通过量一量,折一折,撕一撕,画一画,选择不同的一种或者几种方法来验证三角形的内角和是180°。

  因为《课程标准》明确指出:"要结合有关内容的教学,引导学生进行观察,操作,猜想,培养学生初步的思维能力"。四年级学生经过第一学段以及本单元的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作,主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段。因此,本节课,我将重点引导学生从"猜测――验证"展开学习活动,让学生感受这种重要的数学思维方式。

  三,说教学过程

  我以引入,猜测,证实,深化和应用五个活动环节为主线,让学生通过自主探究学习进行数学的思考过程,积累数学活动经验。

  (一)引入

  呈现情境:出示多个已学的平面图形,让学生认识什么是"内角"。( 把图形中相邻两边的夹角称为内角) 长方形有几个内角 (四个)它的内角有什么特点 (都是直角)这四个内角的和是多少 (360°)三角形有几个内角呢 从而引入课题。

  【设计意图】让学生整体感知三角形内角和的知识,这样的教学, 将三角形内角和置于平面图形内角和的大背景中, 拓展了三角形内角和的数学知识背景, 渗透数学知识之间的联系, 有效地避免了新知识的"横空出

  (二)猜测

  提出问题:长方形内角和是360°,那么三角形内角和是多少呢

  【设计意图】引导学生提出合理猜测:三角形的内角和是180°。

  (三)验证

  (1)量:请学生每人画一个自己喜欢的三角形,接着用量角器量一量,然后把这三个内角的度数加起来算一算,看看得出的三角形的内角和是多少度

  (2)撕―拼:利用平角是180°这一特点,启发学生能否也把三角形的三个内角撕下来拼在一起,成为一个平角 请学生同桌合作,从学具中选出一个三角形,撕下来拼一拼。

  (3)折—拼:把三角形的三个内角都向内折,把这三个内角拼组成一个平角,一个平角是180°,所以得出三角形的内角和是180°。

  (4)画:根据长方形的内角和来验证三角形内角和是180°。

  一个长方形有4个直角,每个直角90°,那么长方形的内角和就是360°,每个长方形都可以平均分成两个直角三角形,每个直角三角形的内角和就是180°。从长方形的内角和联想到直角三角形的内角和是180°。

  【设计意图】利用已经学过的知识构建新的数学知识, 这不仅有助于学生理解新的知识, 而且是一种非常重要的学习方法。在探索三角形内角和规律的教学中,注意引导学生将三角形内角和与平角,长方形四个内角的和等知识联系起来, 并使学生在新旧知识的连接点和新知识的生长点上把握好他们之间的内在联系。在整个探索过程中, 学生积极思考并大胆发言, 他们的创造性思维得到了充分发挥。

  (四)深化

  质疑: 大小不同的三角形, 它们的内角和会是一样吗

  观察指着黑板上两个大小不同但三个角对应相等的三角形并说明原因,三角形变大了, 但角的大小没有变。)

  结论: 角的两条边长了, 但角的大小不变。因为角的大小与边的长短无关。

  实验: 教师先在黑板上固定小棒, 然后用活动角与小棒组成一个三角形, 教师手拿活动角的顶点处, 往下压, 形成一个新的三角形, 活动角在变大, 而另外两个角在变小。这样多次变化, 活动角越来越大, 而另外两个角越来越小。最后, 当活动角的两条边与小棒重合时。

  结论:活动角就是一个平角180°, 另外两个角都是0°。

  【设计意图】小学生由于年龄小, 容易受图形或物体的外在形式的'影响。教师主要是引导学生与角的有关知识联系起来,通过让学生观察利用"角的大小与边的长短无关"的旧知识来理解说明。

  对于利用精巧的小教具的演示, 让学生通过观察,交流,想象, 充分感受三角形三个角之间的联系和变化, 感悟三角形内角和不变的原因。

  (五)应用

  1。基础练习:书本练习十四的习题9,求出三角形各个角的度数。

  2。变式练习:一个三角形可能有两个直角吗 一个三角形可能有两个钝角吗 你能用今天所学的知识说明吗

  3。(1)将两个完全一样的直角三角形拼成一个大三角形, 这个大三角形的内角和是多少

  (2) 将一个大三角形分成两个小三角形, 这两个小三角形的内角和分别是多少

  4。智力大挑战: 你能求出下面图形的内角和吗 书本练习十四的习题

  【设计意图】习题是沟通知识联系的有效手段。在本节课的四个层次的练习中, 能充分注意沟通知识之间的内在联系, 使学生从整体上把握知识的来龙去脉和纵横联系,逐步形成对知识的整体认知, 构建自己的认知结构, 从而发展思维, 提高综合运用知识解决问题的能力。

  第一题将三角形内角和知识与三角形特征结合起来,引导学生综合运用内角和知识和直角三角形,等边三角形等图形特征求三角形内角的度数。

  第二题将三角形内角和知识与三角形的分类知识结合起来,引导学生运用三角形内角和的知识去解释直角三角形,钝角三角形中角的特征, 较好地沟通了知识之间的联系。

  第三题通过两个三角形的分与合的过程,使学生感受此过程中三角内角的 变化情况, 进一步理解三角形内角和的知识。

  第四题是对三角形内角和知识的进一步拓展, 引导学生进一步研究多边形的内角和。教学中, 学生能把这些多边形分成几个三角形, 将多边形内角和与三角形内角和联系起来,并逐步发现多边形内角和的规律, 以此促进学生对多边形内角和知识的整体构建。

  能充分注意沟通知识之间的内在联系, 使学生从整体上把握知识的来龙去脉和纵横联系,逐步形成对知识的整体认知, 构建自己的认知结构, 从而发展思维, 提高综合运用知识解决问题的能力。

《三角形内角和》教学反思14

  本节课采用逐步设置疑问,让学生动手、动脑、动口,积极参与知识学习的全过程,渗透多观察、动脑想、大胆猜、勤钻研的研讨式学习方法,培养了学生学习数学的兴趣,给学生提供更多的活动机会和空间,使学生在参与的过程中得到充足的体验和发展。

  “大胆猜想,小心求证”是科学探究的普遍规律,也是获取知识的一条重要途径。在学生已有知识的基础上,类比猜想四边形的内角和,通过测量、计算,讨论、交流、总结出四边形的内角和为360°的规律的结论。亲身体验所得的知识,会掌握得更加牢固。引导学生学会探究总结事物所含的数学规律,提高了学生综合运用知识去解决问题的.能力。探究过程中,归纳、猜想和验证的数学思想渗透,使学生感悟到数学的神奇和奥妙,提高了学生学习数学的兴趣,增强了学好数学的信心。

《三角形内角和》教学反思15

  “三角形内角和”是北师大版数学四年级下册第二单元认识图形的一节探索与发现课,使学生在学习了三角形的特征、高以及三角形分类的基础上,进一步研究三角形三个角的关系。根据教学目标和学生掌握知识的情况,课堂上我围绕以下几点去完成教学目标:

  一、创设情境,营造研究氛围。

  怎样提供一个良好的研究平台,使学生有兴趣去研究三角形内角的和呢?为此我抛出大、小两个三角形争吵的情境,让学生评判谁说的对?为什么争吵?导入课引出研究问题。“三角形的内角指的是什么?”“三角形的内角和是多少?”激发学生求知的`欲望,引起探究活动。我在导入“研究三角形内角和”时,没有按课前设计的进行,学生直接说出“三角形的内角和是180°”。而我本身却没有顺势进行引导,直接抛出“研究三角形内角和”这一任务,更巧妙的是借此机会鼓励学生,以“验证三角形内角和是不是1800”入手。这一处成为本节课最大的失误。

  二、小组合作,自主探究。

  “是否任何三角形内角和都是180°”,如何验证,这正是小组合作的契机。通过小组内交流,使学生认识到可以通过多种途径来验证,可以量一量、拼一拼、折一折,让学生在小组内完成从特殊到一般的研究过程。然后再小组汇报研究结果以及存在问题。例如,有些小组的学生量出内角和的度数要高于180°或低于180°,先让学生说一下有哪些因素会影响到研究结果的准确性。

  三、练习设计,由易到难。

  研究是为了应用,在应用“三角形内角和是180°”这一结论时,第一层练习是已知三角形两个内角的度数,求另一个角。第二层练习是判断题,让学生应用结论检验语言的严密性。第三层练习是让学生用学过的知识解决四边形、五边形、六边形的内角和。练习设计提问体现开放性,“你还知道了什么”,让学生根据计算结果运用已有经验去判断思索。

  四、教学中存在不足。

  在教学中,由于我对学生了解的不够充分,没有很好的电动学生发言的积极性,另外的原因是教师本身语言枯燥,过渡语设计的不够精彩,也影响了学生的学习兴趣,以后应引起重视。在设计教案时要了解学生,深入教材,精心设计。

【《三角形内角和》教学反思】相关文章:

三角形的内角和教学反思06-28

三角形的内角和教学反思03-27

《三角形的内角和》教学反思03-18

《三角形的内角和》教学反思06-23

【优选】《三角形的内角和》教学反思07-16

《三角形的内角和》教学反思(15篇)04-04

《三角形的内角和》教学反思(精选15篇)04-04

《三角形的内角和》教学反思【精选15篇】07-06

《三角形的内角和》教学反思15篇03-24

同位角内错角同旁内角教学反思04-08