《最大公因数》教学反思
身为一位优秀的教师,教学是重要的任务之一,借助教学反思我们可以学习到很多讲课技巧,我们该怎么去写教学反思呢?以下是小编整理的《最大公因数》教学反思,仅供参考,希望能够帮助到大家。
《最大公因数》教学反思1
本课是在学生已经理解和掌握倍数、因数的含义,初步学会找一个数的倍数和因数,知道一个数的倍数和因数的特点的基础上进行教学的。这部分内容既是“数与代数”领域基础知识的重要组成部分,又是进一步学习约分和通分以及分数四则计算的基础。
第一节课,根据教材是以铺地砖的生活实际作为切入点,要铺整分米数的地砖而且要求要整数块,引入了求两个数的'公因数的必要性。教材主要的教学方法是先分别求出两个数的因数,并按照从大到小的顺序排列出来,从而找出两个数的公有因数,称为这两个数的公因数,其中最大的数就是这两个数的最大公因数。通过例1的教学后,我引导学生总结出求两数的公因数以及最大公因数的方法。练习时发现部分学生还是容易在找一个数的因数的有疏漏,导致求出来的公因数和最大公因数出错。
第二节课,我引入了求最大公因数的另一种方法,分解质因数法,介绍用短除法求两个数的最大公因数。这种方法学生掌握起来比较容易,但也发现部分学生没有除尽,最后的商不是互质数,导致找错最大公因数。
不过相对于第一钟方法,第二种方法在书写上更简便,学生解题时还是比较容易理解,写起来也比较简洁,大部分学生在求几个数的最大公因数时还会选择第二种方法。当然,我还是鼓励学生选择自己喜欢的方法,关键是能理解,懂应用。
《最大公因数》教学反思2
对于本节课,我觉得有以下需要解决和认识。
1.复习寻找因数的方法。
2.联系实际体会学习寻找公因数的必要性。
3.探索寻找2个数的公因数和最大公因数的.方法。
4.结合集合方法直观显示公因数和最大公因数。
5.理解学习公因数和最大公因数的意义以及应用。
6.结合短除法寻找最大公因数的方法。(这个在人教版中作为了解,在本课中,我向孩子们了解介绍,但未做要求)
在课上,我以为长16dm宽12dm的客厅铺上正方形方砖,刚好铺满,能选用集中方砖,这在无形中蕴含这寻找16和12的因数,这样能够孩子们体会寻找公因数的必要性,引起探究欲望。
孩子们有不同的方法和方式去表示公因数的方式,在最后介绍集合方式,在交集中更直观现实公因数,这样更直观的显示,初步渗透集合思想。
学习短除法也为后面教学约分做好先知铺垫,也为孩子们介绍一种寻找最大公因数的简便方法,满足不同水平学生学习的需要。
《最大公因数》教学反思3
本节课教学的内容是认识公因数、最大因数以及求两个数的最大公因数的方法,这些知识是在学生掌握了因数、倍数、找因数的基础上教学的。结合本节课的特点,联系本班学生的实际情况,教师在教学过程中做了如下的尝试
一、适时地渗透集合思想。在教学例1时,解题过程不仅呈现了用列举法解决问题。还引导学生用集合图来表示答案,从而渗透了集合思想,为后续的学习奠定感性认识。
二、关注学生探究活动的空间,将自主探究活动贯彻始终。在教学中,教师为学生创设了三次自主探究的机会。即一在情境中通过动手操作认识公因数,二用集合图表示因数之间的关系,三用自己的`方法求出两个数的最大公因数。在这几次的探究活动中,教师始终积极地调动学生的情感,启发他们主动参与,引导学生感知、理解,从而在脑中形成系统的知识体系。
本节课是教学运用最大公因数的有关知识来解决生活中的实际问题。通过创设生活情境,让学生借助学具摆一摆,算一算或在纸上用彩笔画一画的方法把出现的几种情况记录下来,既提高学生的学习积极性,也让学生体会到新知与生活的密切联系。同时,通过引导学生自主探索、组织交流并验证结论,让学生体会获得成功的喜悦,更加积极地探索新知,掌握所学知识。
本节课的不足之处在于练习部分时间过于仓促,没有足够的时间让学生交流与理解,部分学困生掌握不够到位。这需要教师在今后教堂中合理安排时间,避免时间过于紧迫。
《最大公因数》教学反思4
【多问几个为什么】
1、出差两天,今日回来,与孩子们继续畅游《公倍数和公因数》单元。
思维一旦被激发,就有点一发不可收拾。
从第一课时开始,孩子们与我是完全浸润在了公倍数与公因数的欢乐中。我的态度也从一开始对教材安排的质疑,到现在极力拥护教材的安排。
只有放手给孩子们一个构建的机会,孩子们才能在构建过程中频频发起智慧的邀请。
在学习公倍数的时候,课上巧遇“思维定势”,孩子们以为两个数的公倍数就是它们的乘积;但是在解决书本上的6和9的公倍数是多少时,猛然发现,这个方法不能次次实施。孩子们提出了一系列猜想。其中小彧发现,如果将错就错,把6和9相乘,也可以,但是要除以它们的最大公因数。并且,小彧通过举例,把这个发现从特殊上升到了一般。
因为当时还未学习公因数,我就躲避了问题的内里。
小何在备学中说,我最大的问题是,我知道小彧的说法是对的,但是为何6和9两个数相乘,再除以最大公因数,得到的'就是最小公倍数,其中的道理是什么?
呵呵,好家伙,知道了是什么,自觉追问了为什么?
明天我们要对本章节的内容做个整体梳理,我准备结合短除法,让孩子们意识到小何追问思想的可贵,以及这个方法可行之处究竟是什么。
2、孩子们很爱思考,从第一课时的下课时间开始,就发现两个数若有倍数关系,它们的最小公倍数很奇妙,就是较大的数。
第二课时,我们通过教材上的习题,一起说了这个规律,即诉说了看到的表面现象。
孩子们还不甘心,提出了问题,为什么两个数是倍数关系,最小公倍数就是大的那个数呢?
一时安静后,好几个孩子举高手,并说清了原因:大数本身是小数的倍数,大数又是自己最小的倍数,理所应当是两数的最小公倍数。
3、公倍数的种种猜想,在学习公因数的时候,思想方法得到了迁移。
第一课时,孩子们提出各种猜想,求最大公因数,会不会也像公倍数中两个数有特殊关系,就能轻松的求出结果?
【孩子们+数学=好玩。】
要做找公倍数的上本子作业了,我板书给孩子们看书写格式,他们拉着脸。
我说,我小时候,就是写这么多字的。不过,我可以介绍你们写一种简单的,用“【】”包住两个数,中间用逗号隔开,这样就能代替写这么多字。孩子们一看,多方便呀!居然都“啪啪啪”鼓起掌来,哈!
我满怀惬意的说,你们的掌声与微笑中包含着对数学简洁美的追求啊!
孩子们爽歪歪了。
不过事后,一个资深老师告诉我,这个环节,如果让孩子们创造一下,如何追求简洁。也许,这样对于孩子们的思维发展更有效。一想,我也同意这般。
一节课,只要知识目标达成,那么,过程方法与情意目标是不可分割的。学生在达成过程方法目标的旅程中,岂有不快乐,不感受到丰富体验的?
《最大公因数》教学反思5
日本著名数学教育家米山国藏指出:“作为知识的数学出校门不到两年可能就忘了,唯有深深铭记在头脑中的是数学的精神,数学的思想、研究的方法和着眼点等,这些随时随地发生作用,使他们终身受益。”从这个教学的设计中我们可以看到,教学中不只是让学生接受一个概念知识或一种求最大公约数的方法;不只是注重数学形式层面的教学,而是更重视数学发现层面的教学,即让学生在经历“数学家”解决问题的过程中去理解、去感受一种数学的.思想和观念──数学化思想。学生先是感知地板砖中隐含的数学,会用约数、倍数知识解释简单的生活现象,进而思考并尝试解决画廊内装饰画的设计,学生自然会联想到地板砖中数学知识。但是,从解释到应用设计,在没有学习公约数的情况下会存在较大的难度。于是,创设了做数学的空间。让他们在设计正方形的过程中,逐渐感知公约数的存在,建立了解决这种问题的数学模型。再反思与总结,引导学生自己创造了“公约数”与“最大公约数”的概念。
数学化思想观念是指用数学眼光去认识和处理周围事物或数学问题,可以培养学生良好的“用数学”意识,使数学关系成为学生的一种思维模式。而我们的课堂中,大多还是围绕知识就事论事,没有从形成学生思维模式的角度去展开知识形成和问题解决的思维过程,去注重现代的数学思想,去隐含重要的数学方法,这样,学生学到的只是知识的堆砌,没有自主的发展和对数学本质的领悟。
《最大公因数》教学反思6
“公因数和最大公因数”是第三单元第三课时的内容,在此之前,已经学过了公倍数和最小公倍数,掌握了公倍数和最小公倍数的概念和求法,这节课的教学过程与公倍数的教学非常相似,吸取了公倍数教学时的教训,本节课教学公因数概念的时候,我先让学生读题,说清题意,再进行操作,这样以来学生是带着问题去操作的,不像公倍数时部分学生题目都理解不了就开始动手操作,不能完全达到本题操作的目的。在教学求公因数方法的时候,我也让学生与公倍数求法进行了比较,通过比较学生发现了公倍数是无限的,没有给定范围时要写省略号,而公因数是有限个的,要写好句号,表示书写完成;还发现找公倍数时是找最小公倍数,而找公因数是最大公因数;还发现求公因数的方法中是先找小数的因数再从其中找大数的因数,而求公倍数却是利用大数翻倍法,找出来的是大数的倍数,再从其中找出小数的倍数。不仅两个例题的教学过程相似,连练习的设计也是相似的,所以学生在完成练习的时候,已经对练习的形式较为熟悉,练习完成的`较好。正因为两节课太相似,所以小部分学生已经有些混淆了,分不清怎么求公倍数,怎么求公因数,这个是在以后教学中要避免的。
这节课的作业也能反映一些本节课上的问题,在教学公倍数的时候,我没有强调集合中元素的互异性,作业中不少学生在公倍数一栏填写的数字,同时出现在左右部分的集合中,在这节课练习时,我特意强调了这一点,希望学生们能记住,在完成练习五的时候还发现,部分学生对于2、3、的倍数的特征记得不清楚了,所以在判断是不是它们的倍数的时候还有一些人用大数去除以2、3、5的方法来判断,耽误了很多的时间,这是我上课之前没有想到的,要是在做这一题之前先让学生回忆2、3、5的倍数的特征,想必他们会节省更多的时间。
《最大公因数》教学反思7
一、分析基础知识,准确制定教学目标。
本节课是在学生已经理解和掌握因数、倍数的含义,初步学会找一个数的倍数和因数,知道一个数的倍数和因数的特点的基础上进行教学的。这部分内容既是“数与代数”领域基础知识的重要组成部分,又是进一步学习约分和分数四则计算的基础。我根据教材的编写特点准确地制定了教学目标,即理解公因数及最大公因数的意义。知道任意两个数都有公因数;能够采用枚举法找到两个数的最大公因数。通过动手、观察、思考等教学活动,从拼摆过程中发现公因数,再通过进一步探究明确公因数及最大公因数的含义。
二、在现实的情境中教学概念,借助直观操作活动,经历概念的形成过程。
以往教学公因数的概念,通常是直接找出两个自然数的因数,然后让学生发现有的因数是两个数公有的,从而揭示公因数和最大公因数的概念。而本节课注意引导学生通过找出已知面积的长方形的长和宽的长度,确定怎样使这样的两个长方形拼成一个新的长方形。其次,引导学生观察这样的几组数据与长方形面积之间的`关系——右面的这些数据都是左面这些数据的因数。三是揭示出公因数和最大公因数的含义——指出用红笔标出的这些数据是左面这两个数的公因数,找到这里面最大的一个公因数,完成由形象到抽象的过程,把感性认识提升为理性认识。
三、把握内涵外延,准确理解概念的含义。
概念的内涵是指这个概念的所反映的一切对象的共同的本质属性。公因数是几个数公有的因数,可见“几个数公有的”是公因数的本质属性。因此在因数的基础上学习公因数,关键在于突出“公有”的含义。本节课突出概念的内涵是“既是……也是……”即“公有”。教学中,我首先让学生在练习本上找出12和16的因数,然后借助直观的集合图揭示出“既是12的因数,又是16的因数”这句话的含义,帮助学生进一步理解公因数和最大公因数的意义。这样安排有两点好处:一是学生通过操作活动,能体会公因数的实际背景,加深对抽象概念的理解;二是有利于改善学习方式,便于学生通过操作和交流经历学习过程。
概念的外延是指这个概念包含的一切对象。对具体事例是否属于概念作出判断,就是识别概念的外延,这对加深概念的认识很有好处。本节课我注意利用反例,来凸现公因数的含义。在用集合图法来表示12和16的公因数的时候,找到填写错误的学生的例子,提示学生注意:并集里填写的是两个数的公因数,而没有交在一起的集合图中,只填写这两个数的都有的因数,从而进一步明确公因数的概念。
四、教学中的不足:
教师的提问有时指向性不是很强,学生不能很快地明白老师的意图,影响了学生的思考,须进一步提高。在教学“两个长和宽都是整厘米数的长方形的面积分别是2平方厘米和3平方厘米,这两个长方形的长、宽分别是多少?”时,学生有些困难,我应该让学生动手在本上画一画,帮助学生找到,降低难度,这点考虑不周,没有切实联系实际。
自己要学的东西还有很多,应注意提高自身修养。多阅读、多听课,努力提高自己的教学水平,更好地为学生服务。
《最大公因数》教学反思8
《标准》指出“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。”这一理念要求我们教师的角色必须转变。我想教师的作用必须体现在以下几个方面。一是要引导学生思考和寻找眼前的问题与自己已有的知识体验之间的关联;二是要提供把学生置于问题情景之中的机会;三是要营造一个激励探索和理解的气氛,为学生提供有启发性的讨论模式;四是要鼓励学生表达,并且在加深理解的基础上,对不同的答案开展讨论;五是要引导学生分享彼此的思想和结果,并重新审视自己的想法。
对照《课标》的理念,我对《公因数与最大公因数》的教学作了一点尝试。
一、引导学生思考和寻找眼前的问题与自己已有的知识体验之间的关联。
《公因数与最大公因数》是在《公倍数和最小公倍数》之后学习的一个内容。如果我们对本课内容作一分析的话,会发现这两部分内容无论是在教材的呈现程序还是在思考方法上都有其相似之处。基于这一认识,在课的开始我作了如下的设计:
“今天我们学习公因数与最大公因数。对于今天学习的内容你有什么猜测?”
学生已经学过公倍数与最小公倍数,这两部分内容有其相似之处,课始放手让学生自由猜测,学生通过对已有认知的检索,必定会催生出自己的一些想法,从课的实施情况来看,也取得了令人满意的效果。什么是公因数和最大公因数?如何找公因数与最大公因数?为什么是最大公因数面不是最小公因数?这一些问题在学生的思考与思维的碰撞中得到了较好的生成。无疑这样的设计贴近学生的最近发展区,为课堂的有效性奠定了基础。
二、提供把学生置于问题情景之中的`机会,营造一个激励探索和理解的气氛
“对于今天学习的内容你有什么猜测?”这一问题的包容性较大,不同的学生面对这一问题都能说出自己不同的猜测,学生的差异与个性得到了较好的尊重,真正体现了面向全体的思想。不同学生在思考这一问题时都有了自己的见解,在相互补充与想互启发中生成了本课教学的内容,使学生充分体会了合作的魅力,构建了一个和谐的课堂生活。在这一过程中学生深深地体会到数学知识并不是那么高深莫测、可敬而不可亲。数学并不可怕,它其实滋生于原有的知识,植根于生活经验之中。这样的教学无疑有利于培养学生的自信心,而自信心的培养不就是教育最有意义而又最根本的内容吗?
三、让学生进行独立思考和自主探索
通过学生的猜测,我把学生的提出的问题进行了整理:
(1) 什么是公因数与最大公因数?
(2) 怎样找公因数与最大公因数?
(3) 为什么是最大公因数而不是最小公因数?
(4) 这一部分知识到底有什么作用?
我先让学生独立思考?然后组织交流,最后让学生自学课本
这样的设计对学生来说具有一定的挑战性,在问题解决的过程中充分发挥了学生的主体性。在这一过程中学生形成了自己的理解,在与他人合作与交流中逐渐完善了自己的想法。我想这大概就是《标准》中倡导给学生提供探索与交流的时间和空间的应有之意吧。
《最大公因数》教学反思9
学生的学习过程是一种特殊的认知过程,必须在积极主动的情况下在自己的逐步思考和探究中达到解决的目的。
1、小组讨论合作学习研究多了,独立思考就有所忽视。从数学学习的本质来说,独立思考是主流,合作交流应在独立思考的基础上进行。只有在独立思考的前提下,才有交流的可能。因此,在本课设计时,求两数的最大公约数。先让学生课前独立探究方法,在学生有充分独立思考的基础上再交流评价。才真正实现每个学生潜质的开发和学生之间真正的差异互补。
2、独特的见解总是在主体迷恋执着,充分自由的状态中萌芽出来的,在教学中应放下架子,蹲下身子来倾听学生,相信每个学生都会有精彩的表现。正如陶行知所说的:“学生能做许多你不能做的事,也能做许多你认为他不能做的事。”不要小看了孩子,要对每位孩子充满信心,从而使课堂频频发出精彩的光芒。如本课时在开放题的解答过程中,学生能在一些简单的尝试开始,从中逐步发现其中的规律,以至于应用获得的规律来实现问题解决的最优化,不得不惊奇孩子能力的巨大。
3、当数学问题情境作用于思考者时就有可能展开数学思维活动,可以说,问题的设计和问题的情境的创设是促进数学思考的客观性因素。让学生在问题情境中层层推出数学思考“还有没有其他的方法”“他的方法你认为怎样”“你是怎么想的”鼓励表扬敢于思索的同学,错误的'回答也是对正确知识的一种辨析过程,新知识对每个每一次学习的学生都是一个发现、创造的大空间。
两个数的最大公约数的教学反思有探究就有发现,有发现就是
学习的成功。成功所带来的喜悦总是进一步学习的最大动力,自主探究的课堂,为个性不同的学生的发展留下了必要的空间,让他们都有机会表达自己的思想,以自己独特的方式去学习数学,发展知识,各自体验到学习数学的成功感。
《最大公因数》教学反思10
一.教学设计学科名称:
北师大版数学五年级上册《找最大公因数》
二.所在班级情况,学生特点分析:
我校地处城郊,所带班级学生共25人,学生的思维比较活跃,比较善于提出数学问题,能在小组合作学习中主动探究知识。本册一单元,学生已经理解了因数和倍数的意义,能用乘法算式、集合等方式列举出一个数的因数。因此用列举法找最大公因数没有困难。而利用因数关系、互质数关系找还有一定的难度。因为学生不易发现这两个数具有这些关系。
三.教学内容分析:
教材直接呈现了找公因数的一般方法:先用想乘法算式的方式分别找出12和18 的因数,再找出公因数和最大公因数。在此基础上,引出公因数与最大公因数的概念。教材用集合的方式呈现探索的过程。在练习1、2中引出了用因数关系、互质数关系找最大公因数,教师要引导学生发现这个方法并会运用。教师要注意让学生经历知识的形成过程,要重视引发学生的数学思考。
四.教学目标:
知识与技能:探索找两个数的公因数的方法,会用列举法找出两个数的公因数和最大公因数。
过程与方法:经历找两个数的公因数的过程,理解公因数和最大公因数的意义。
情感、态度与价值:培养学生对学习数学的兴趣。通过观察、分析、归纳等数学活动,体验数学问题的探索性和挑战性,感受数学思考的条理性。
五.教学难点分析:
教学重点:探索找两个数的公因数的方法,会用列举法找出两个数的公因数和最大公因数。
教学难点:经历找两个数的公因数的过程,理解公因数和最大公因数的意义。
六.教学课时:
一课时
七.教学过程:
(一)复习
师:出示3×4=12,( )是12的因数。
生:3和4是12的因数。
(二)探究新知
1、认识公因数和最大公因数
(1)师:除了3和4是12的因数,12的因数还有哪些?
生独立完成后汇报,板书 12的因数有:1、2、3、4、6、12。
师:要找出一个数的全部因数,需要注意什么?
生:要一对一对有序地写,这样才不会遗漏。
师:照这样的方法,请你写出18的全部因数。
生独立写后汇报:18的因数有:1、2、3、6、9、18
(此时出示集合图)
师:在这两个圈里,应该填上什么数?请大家完成正在书45页上。
生做后汇报师板书于圈中。
(2)师:请大家找一找在12和18的因数中,有没有相同的因数,相同的因数有哪几个。
生找出12和18相同的因数有:1、2、3、6
师:像这样,既是12的因数,又是18的因数,我们就说这些数都是12和18的公因数。
师:这里最大的公因数是几?
生:最大是6。
师:6就是12和18的最大公因数。这就是我们这节课学习的`内容——找最大公因数。
板书课题:找最大公因数
(此时出示集合图)
师:中间这一区域有什么特征?应该填什么数字?独立思考后小组讨论
(生分组讨论)
汇报:中间区域是12的因数和18的因数的交叉区域,所填的数应该既是12的因数又是18的因数,也就是12和18的公因数填在这里。
师:请大家完成这个题。(生做后订正)
2、探索找最大公因数的方法
(1)列举法
刚才我们找最大公因数的方法叫做列举法。(板书:列举法)
请大家用这种方法找出下面每组数的最大公因数。 9和15
(2)利用因数关系找
师:请大家翻到书第45页,独立完成第一题。
生汇报:
8的因数: 1、2、4、8
16的因数: 1、2、4、8、16
8和16的公因数: 1、2、4、8
8和16的最大公因数是 8
师引导学生观察最后一句,想想8和16之间是什么关系,与他们的最大公因数有什么关系?
生独立思考后分组讨论。
生汇报:8是16的因数,所以8和16的最大公因数就是8。
师引导生归纳并板书:如果较小数是较大数的因数,那么较小数就是这两个数的最大公因数。(板书:用因数关系找)
练习:找出下面每组数的最大公因数。 4和12 28和7 54和9
(3)利用互质数关系找
师:请大家独立完成第二题。
生汇报:
5的因数: 1、5
7的因数: 1、7
5和7的最大公因数是 1
师引导学生观察最后一句5和7之间是什么关系,与他们的最大公因数有什么关系?
生独立思考后分组讨论。
生汇报:5和7都是质数,所以5和7的最大公因数就是1。
师:像这样只有公因数1的两个数叫互质数。如果两个数是互质数,那么它们的公因数只有1。(板书:用互质数关系找)
练习:找出下面每组数的最大公因数。 4和5 11和7 8和9
(4)整理找最大公因数的方法
师:今天我们学习了用哪些方法找最大公因数?
生:列举法,用因数关系找,用互质数关系找。
师:我们在做题时,要观察给出的数字的特征选用不同的方法。
(三)练习
书46页3、4、5题。生独立完成,师巡视指导。
(四)全课小结
这节课你有什么收获?
八.课堂练习:
在括号里填写每组数的最大公因数
6和18( ) 14和21( ) 15和25( )
12和8( ) 16和24( ) 18和27( )
9和10( ) 17和18( ) 24和25( )
九.作业安排:
完成练习册上的习题
十. 附录(教学资料及资源):
1、教师用书:北师大版五年级数学上册
2、数字卡片
十一. 自我问答:
短除法求最大公因数在书中暂时没有出现,只在求最小公倍数后以“你知道吗”的形式出现,但这种方法我觉得很实用,不知教材的意图是什么?究竟怎样处理?
教学反思:
本节课是在学生掌握了因数、倍数、找因数的基础上进行教学,通过解决故事中的问题,让学生逐层深入地懂得找公因数的基本方法。在此基础上,引出公因数和最大公因数的概念,在填写公因数时,学生往往容易出现重复的现象。
在教学过程中,我鼓励孩子归纳总结找最大公因数特征和方法。先看两个数是不是倍数关系,如果是倍数关系,那么小的那个数就是最大公因数。如果两个数是互质数或者是相邻的两个自然数,那么这两个数的最大公因数就是1。
找最大公因数时,我向学生介绍了短除法,当数字比较大时,用短除法比较简单。
《最大公因数》教学反思11
一、,找一个数的因数
要成对找,这在教学因数时就是一个难点。
二、教学例题3时,应先组织学生大胆猜测:“哪种纸片能正好铺满这个长方形?”再让学生实践验证。
猜测、验证的过程是学生进行探究活动的必要途径。在实践验证的过程中,我紧扣用边长( )厘米的正方形铺长方形,能铺( )层,每层铺( )个。并与其中有两种正方形不能正好铺满长方形的情况作比较,组织学生交流:“怎样的正方形才能正好铺满这个长方形?”由于前面铺垫充分,学生很顺利地得出了结论。例题3的教学, “哪种哪种纸片能正好铺满这个长方形?”“还有哪些边长整厘米数的正方形能正好铺满这个长方形?”“任何两个数的公因数个数都是有限的吗?”将学生的思维一步步引向深入,就能激发学生自主探究的热情。
三、教学例4时,应充分放手让学生探索8和12的`公因数以及最大公因数。
交流中,应充分肯定学生的方法,学生在交流中出现问题时,应让他们自我修正,自我完善。并对四种方法进行比较“看哪种方法更便捷”。最大公因数的概念也要通过练习,让学生自己谈对最大公因数的感悟。
《最大公因数》教学反思12
《两三位数除以一位数》商是两位数是在学生学习了商是三位数和有余数除法的基础上进行的,它是学习除数是多位数除法的基础。因此要在引导学生解决具体问题的过程中,切实理解算理,掌握计算方法。
1、联系旧知,激发兴趣
本节课我有意识的在一开始设计了抢答环节,让学生判断大屏幕上几道题目的商的位数,进而发现不同,激发兴趣,引入本节课的学习。从效果上看,学生在判断的过程中比较感兴趣,并能初步感受与旧知的联系与不同,达到了预期的目的。
2、放手学生,设置大问题
本节课我在这方面做的不好。在摆小棒理解算理环节,我领的比较多,学生和老师一问一答,比如:“先分什么?再分什么?每份是多少”等,虽然学生最后也弄明白了该如何分小棒,但学生的能力没有得到提高。在于老师的`建议下,在重建设计中,我会注意放手,设置大问题。比如:“请同学们看着大屏幕上的小棒,想一想应该怎样分呢?先自己想一想,然后同桌交流一下。”让学生带着问题思考,在思考中考虑摆小棒的全过程,而不是想一开始那样,思路被割裂开了。之后再全班交流,教师也可适当引领点拨,但这和我之前的设计感觉就不一样了,后者更能体现学生主体地位。在这方面,我今后还应提高意识,不断实践。
3、设计新颖的练习题,增多练习内容。
计算教学,单纯的让学生计算势必会使学生产生厌倦。我联系学生实际和生活实际,设计出多种多样的练习题,比如:计算之后让学生思考问题“想一想:三位数除以一位数,什么时候商是三位数,什么时候商是两位数?”或让学生“火眼金睛”辨别对错,或让学生在解决实际问题中说一说先算什么再算什么,感受解决实际问题的一般环节,将思路渗透到日常教学中,或在最后让学生根据所学再来一组比赛等,结合学生不同的计算阶段提出不同的要求和练习形式,使单调枯燥的计算练习变得生动有趣,达到了较好的教学效果。
我将以本次讲课为契机,在今后的教学中应用本次活动学到的知识,加以实践,不断提高自身的教学水平。
《最大公因数》教学反思13
教学内容:第26~28页的例3、例4、“练一练”、“练习五”的第1~5题。
目标预设:
1、理解公因数的含义,掌握求两个公因数和最大公因数的方法。
2、经历“猜测——验证”的数学学习过程,感受科学探究的一般方法,培养抽象思维能力,积累数学活动经验。
3、感受数学的奇妙,培养对数学的积极情感。
教学重点和难点:理解公因数的含义,掌握求两个数最大公因数的方法。
课程实施:
一、自主构建公因数意义
1、出示边长6厘米、边长4厘米的小正方形个若干以及一个长18厘米、宽12厘米的长方形。
猜一猜:你觉得哪一种正方形可以将这个正方形铺满。
2、组织学生同桌合作,摆放小正方形,
教师要帮助学有困难的小组完成活动任务。
3、交流:边长6厘米的正方形纸可以正好铺满这个长方形。
为什么边长6厘米的正方形正好铺满这个长方形?
结合刚才的操作活动体验,学生明白:因为12÷6=2(竖排放2行),18÷6=3(横排放3列),也就是6既是12的因数,也是18的因数,所以可以正好摆满。
4、讨论:还有哪些边长是整厘米的正方形纸片也能正好铺满这个长方形?简单地解释自己推测的理由。
5、只要边长的厘米数既是12的因数,又是18的因数,就能正好铺满这个长方形吗?
6、提问:4是12和18的公因数吗?
7、通过刚才的学习,你有什么话想说吗?
二、独立探索找公因数的方法。
1、8和12的公因数有哪些?最大公因数是几?
放手让学生自己探索解决问题的方法。
2、交流:学生出现的方法:
(1)、分别写出8和12的因数,再找一找他们的公因数;
(2)、先找8的因数,再从8的因数中找12的因数;
……
交流时结合自己的方法说说这样找的理由,
3、“集合圈”
我们同样也可以用集合圈表示8和12的公因数。
出示集合圈,先让学生自己填写,再说说每一部分表示的含义。
4、观察比较,感受公因数的有限性,
公因数的集合圈与公倍数有什么不同的地方?为什么公因数集合圈中不需要省略号?引导学生从“因数的有限性”推想出“两个数的公因数的个数是有限的”。
5、练一练
先让学生根据要求完成。通过交流,进一步理解找两个数公因数和最大公因数的方法,感受两者的联系与区别,
三.促进知识向技能的转化
1、“练习五”第1题
让学生独立完成,进一步理解集合圈的表示方法,深化对求两个数最大公因数的方法的认识。
2、“练习五”第4题
⑴先让学生自主判断第一组数,然后交流各自的方法,比较得出“利用2.3.5倍数的特征”进行判断,可以提高正确率。
⑵出示其他几组让学生选择合理的方法进行判断,同时提醒两个数的公因数可以有2.3.5中的多个,为后面学习月份积累策略。
3、“练习五”第5题
要启发学生用不同的.方法找出每组数的最大公因数,提倡灵活运用各种策略快速解题,
四、通过本节课的学习,你有哪些收获?
五.作业布置
“练习五”第2.3题
课后反思:
这部分内容的结构与“公倍数和最小公倍数”基本相同,结合具体的情境,引导学生通过观察、操作、分析、比较、抽象和概括等活动,探索并理解公因数、最大公因数的含义,掌握求两个数的最大公因数的方法。
1、我让学生依托动手操作,加强对比观察,沟通新旧知识的联系,优化概念引进的过程。在教学例3时,我分四步组织学生
的活动。第一步,让学生“分别用边长6厘米和4厘米的正方形纸片铺长18厘米、宽12厘米的长方形”,铺前先思考:边长是多少的正方形可以铺满这个长方形?通过操作,学生都知道边长6厘米的正方形可以铺满长18厘米、宽12厘米的长方形。引导学生具体感知公因数的含义。第二步,组织讨论“还有哪些边长是整厘米数的正方形纸片也能正好铺满这个长方形”,通过思考,学生明白:“只要边长的厘米数既是12的因数,又是18的因数,就能正好铺满”这个长方形。第三步,可以先让学生说一说1、2、3和6的共同特征,再告诉学生1、2、3和6的共同特征,再告诉学生“1、2、3和6既是12的因数,又是18的因数,它们是12和18的公因数。第四步,让学生说一说4为什么不是12和18的公因数,使学生加深对公因数含义的理解,知道4是12的因数,但不是18的因数,所以4就不是12和18的公因数。通过正、反两方面的比较,优化概念的形成。
2、着眼于问题的解决,鼓励学生自主探索,逐步形成概念结构。教学例4是,我让学生先独立思考,用自己的方法找出8和12的公因数和最大的公因数。再通过交流,使学生在相互启发的过程中进一步打开思路,明确方法。由于学生已经积累了较为丰富的求两个数的最小公倍数的方法,因而这里的重点是让学生在自主探索的基础上合乎逻辑地表达自己的思考过程,并体会不同方法的内在一致性。这时,我适时引导学生建立概念结构:因数——公因数——最大公因数,并且辨析这些概念的联系与区别。此外,考虑到学生也已经初步认识了用集合图表示两个相交的集合圈,所以我让学生根据对有关概念的理解,独立把8和12的因数分别填在集合图中的合适部分,然后再看图说说各自的想法,说说每一个区域内的数分别表示什么,把静态的集合图转化成动态的探索对象,让学生加深对集合图的理解,也使集合思想的渗透落到实处。
3、练习的重点是让学生通过操作和填空,进一步理解求公因数和最大公因数的方法。让学生在解决问题的过程中提炼解题策略,优化概念应用的过程。
《最大公因数》教学反思14
公因数与最大公因数这一课教材设计了一个用边长6厘米和4厘米正方形铺长18厘米,宽12厘米长方形的问题,让学生在解决实际问题中探索公因数的认识。因此,在教学中要重视通过尝试解决问题让学生联系已有的知识来引入公因数的认识。使学生初步体会学习公因数在解决实际问题中有着重要作用。
这节课的上课情况感觉较好,课堂比较流畅,重难点也都注意到了,但是通过学生作业反馈情况来看,部分学生在寻找公因数和最大公因数时,容易出现漏掉因数的情况,如9的因数容易漏掉因数3等。在写公因数的示意图时,部分学生出现中间写了公因数后,两边还是将所有因数都写了进去,这一情况在预设时我虽然想到了学生会错,也在课堂上进行了说明,但是少数学生还是出现了错误。
用例举的策略找出所有公因数的教学中,教材上有种层次不同学生可以掌握的方法参考,在这里的教学中我只是参照教材注重了这两种方法的讲解,这里教材的应是要求学生有序地列举就行了,不同水平的'学生采用的方法可以不一样,因此,在这部分内容的教学时,有些学生运用了一些比较独特的方法寻找公因数,教师应该给予肯定,说明只要有序地列举出因数来寻找公因数就可以了。但是,对于学生出现的各种方法可以让学生进行对比,体会哪种方法更好,更适合自己,进而对自己的算法进行优化。
《最大公因数》教学反思15
教学 例3时先用边长6厘米和4厘米的正方形纸片,分别铺长18厘米、宽12厘米的长方形,教师选择正方形纸片铺长方形的活动教学公因数,是因为这一活动能吸引学生发现和提出问题,能引导学生思考。学生用同两张正方形纸片分别铺一个不同的长方形,面对出现的两种结果,会发现“为什么有时正好铺满、有时不能”,“什么时候正好铺满、什么时候不能”这些有研究价值的问题。他们沿着长方形的边铺正方形纸片,就会想到正好铺满与不能正好铺满的原因可能和边长有关,于是产生进一步研究长方形边长和正方形边长关系的愿望。分析长方形的长、宽和正方形边长之间的关系,按学生的认知规律,设计成两个层次: 第一个层次联系铺的过程与结果,从长方形的长、宽除以正方形的边长没有余数和有余数的层面上,体会正好铺满与不能正好铺满的原因。第二个层次根据边长6厘米的正方形正好铺满长18厘米、宽12厘米的长方形、而边长4厘米的正方形不能正好铺满长18厘米、宽12厘米的'长方形的经验,联想边长几厘米的正方形还能正好铺满长18厘米、宽12厘米的长方形。先找到这些正方形,把它们边长从小到大排列,知道这样的正方形的个数是有限的。再用“既是12的因数,又是18的因数”概括地描述这些正方形边长的特征。显然,前一层次形象思维的成分较大,思考难度较小,对后一层次的抽象认识有重要的支持作用。
反思:突出概念的内涵、外延,让学生准确理解概念。
我用“既是……又是……”的描述,让学生理解“公有”的意思。例3先联系用边长1、2、3、6厘米的正方形正好能铺满长18厘米、宽12厘米的长方形纸片的现象,从长方形的长、宽分别除以正方形边长都没有余数,得出正方形的边长“既是12的因数,又是18的因数”,一方面概括了这些正方形边长的特点,另一方面让学生体会“既是……又是……”的意思。然后进一步概括 “1、2、3、6既是12的因数,又是18的因数,它们是12和18的公因数”,形成公因数的概念。
由于知识的迁移,学生很容易想到用集合图直观形象地显示公因数的含义。第27页把8的因数和12的因数分别写到两个集合圈里,这两个集合圈有一部分重叠,在重叠部分里写的数既是8的因数,也是12的因数,是8和12的公因数。先观察这个集合图,再填写第28页的集合图,学生能进一步体会公因数的含义。概念的外延是指这个概念包括的一切对象。
运用数学概念,让学生探索找两个数的最大公因数的方法。
例4教学求两个数的最大公因数,出现了两种解决问题的方法。学生有的先分别写出8和12的因数,再找出它们的公因数和最大公因数。有的在8的因数里找12的因数,这样操作比较方便,但容易遗漏。我有意引导学生选择第一种。练习五的第3题就是这种方法的应用。
充分利用教育资源,自制课件,协助教学。
限于操作的局部性,我认真制作了实用的课件,让直观、清晰的页面直接辅助我教学,学生表现积极,课堂气氛比较活跃,提问、释疑、解惑,练习的热情很高。
本课设计目的是使学生学习公因数、最大公因数的意义,并学会找两个数的最大公因数的方法,从整节课学生表现情况和课后作业反馈来看,学生对本部分知识知识掌握较好,学习积极并具有热情,就实效性讲很令人满意。
【《最大公因数》教学反思】相关文章:
公因数和最大公因数教学反思04-22
找最大公因数教学反思03-27
因数和最大公因数教学反思06-26
《最大的书》教学反思10-27
《最大的“书”》教学反思04-11
最大的书教学反思04-08
《最大的麦穗》教学反思03-21
《最大麦穗》教学反思03-21
《最大的“书”》教学反思(精选15篇)04-12