- 相关推荐
《认识轴对称图形》数学教学反思
身为一名刚到岗的教师,我们要有很强的课堂教学能力,我们可以把教学过程中的感悟记录在教学反思中,那么教学反思应该怎么写才合适呢?下面是小编整理的《认识轴对称图形》数学教学反思,希望能够帮助到大家。
《认识轴对称图形》数学教学反思1
一、设计思路:
本节课作为分式方程的第一节课,是在学生掌握了一元一次方程的解法及分式四则混合运算的基础上展开的,既是对前一节内容的深化,又为以后的教学 应用 打下了良好的基础,因而在教材中具有不可忽略的地位与作用。本节的教学重点是让学生清楚的认识到分式方程也是解决实际问题的工具之一,探索分式方程概念,明确分式方程与整式方程的区别和联系。
二.教学知识点:
在本课的教学过程中,我认为应从这样的几个方面入手:
1、在实际问题中充分理解题意,寻找等量关系,并依据等量关系列出方程。
2、分式方程和整式方程的.区别:分清楚分式方程必须满足的两个条件,⑴方程式里必须有分式,⑵分母中含有未知数。这两个条件是判断一个方程是否为分式方程的充要条件。
3、分式方程和整式方程的联系:分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应充分体现这种化归思想的教学。
三、总体反思:
首先是学生如何顺利的找到题目中的等量关系,书本给出两个例子较难,按照书本的引入,一开始课堂就可能处以一种安静的思维,处于很难打开的状态,不能有效地激发学生学习兴趣与激情,所以才在学案中搭梯子降低难度,让学生体会到成功的喜悦,这样学生才会愿意继续探索与学习;实际问题的难度设置上是层层深入,问题也是分层次性,能够让不同层面的学生都有不同的体会与感受。
其次在教学过程中应提高教师自身的随机应变的能力和预设问题能力,课前充分备好学生。例如:以前学过整式方程,我们以前只是说一次方程之类的,没有系统的归类它是整式方程。如果不事先详细解释清楚整式方程这个词时,合作探究二进行的就不会很顺利。
最后,我们应让恰到好处的鼓励语和评价贯穿于教学过程中,只有这样,学生才能不断增强自信,在愉悦中探究新知,解决问题。
总而言之,教无定法,学无定法。我们应在教改的道路上不断充实自我,完善自我。
八年级数学教学反思5
分式方程在整个初中数学中占有十分重要的地位在本课的教学过程中,我认为应从这样的几个方面入手:
1、分式方程和整式方程的区别:分清楚分式分式方程必须满足的两个条件,⑴方程式里必须有分式,⑵分母中含有未知数。这两个条件是判断一个方程是否为分式方程的充要条件。同时,由于分母中含有未知数,所以将其转化为整式方程后求出的解就应使每一个分式有意义,否则,这个根就是原方程的增根。正是由于分式方程与整式方程的区别,在解分式方程时必须进行检验。
2.分式方程和整式方程的联系:分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应充分体现这种化归思想的教学。
3、解分式方程时,如果分母是多项式时,应先写出将分母进行因式分解的步骤来,从而让学生准确无误地找出最简公分母。
4.对分式方程可能产生增根的原因,要启发学生认真思考和讨论。
在本节教学中,学生对于一元一次方程的解法已经十分了解,学生在解方程中一般的方法完全能够解决,在这个问题中不用过多的用时间,所有的时间全部放给学生去练习,重点让学生去练习检验这一步骤。
通过学习,学生感到学的容易,老师教的轻松。教学效果十分理想。
《认识轴对称图形》数学教学反思2
一、数学的实质是一种文化
《新课程规范》指出:“数学是人类的一种文化,它的内容、思想、方法、语言是现代文明的一局部。”本节课的教学我没有拘泥于课本,“唯教材至上”,而是变“教教材””为“用教材”,把教材作为一个传达数学知识的一个载体。在公开课教案中将“自然、社会、历史、数学”等领域中轴对称图形有机的结合在一起,放大了轴对称图形的文化特性,折射出“冰冷”的图形背后的魅力,将轴对称图形的神韵淋漓尽致的表示了出来。
课堂上我用课件展示自然界中的蝴蝶、蜻蜓等具有轴对称图形特征的动植物图片,调动了同学的已有的表象,丰富了同学的感知。面对一幅幅精美的图片,同学流露出的不只是惊喜,还有几分疑惑:为什么大自然如此的垂青于轴对称图形的形状呢?当“天安门、重庆人民大礼堂、上海东方明珠、河北赵洲桥”等极具中国特色的具有对称美的事物出现在同学的眼前时,同学们被这种文化氛围陶醉了,激发了同学热爱劳动人民的朴素情感和民族自豪感。
二、把探究活动引向深入
我在教学中创设了剪纸游戏、展示同学的作品,然后让同学观察自身创作的作品,比较他们的不同。由于是同学自身的`作品,因此同学观察的很仔细。“我发现他们形状不同。”“我发现他们大小不同。”“我发现它们左右两边是完全一样的。”这样的发现过程是真实的,也是一个逐渐发现的数学学习过程。这样同学们就能够较好的判断一个图形是不是轴对称图形。
寻找平面图形中的轴对称图形是本节课的一个重要的环节。一是放手让同学通过自主探索、小组合作的方式进行探究性的活动,最后让同学汇报、争论。二是上述案例中的方法。尽管开放性没有方法一好,但是由于有了师生的互动,。在实践中我发现尽管方法一有很强的开放性,有利于培养同学的合作能力和探究能力,但是经常表示为优等生的游戏,绝大局部后进、中等的同学课后对这一环节表示疑惑。因此我在教学中采用了方式二,尽管开放性没有方法一好,但是由于有了师生的互动,方向性较强,又培养了同学层层深入研究、发现问题的能力。在争论平行四边形是否是轴对称图形的环节里,同学思维的火花在迸发,师生的对话是那样的自然,平等。教师的欣赏犹如催化剂,使探究活动走向高潮,生成性的精彩不时在课堂出现。
纵观本节课的教学,同学在新课程文化的轻拂下学习还是比较轻松的。这股清新之风吹走了数学的枯燥、苦涩,吹走了同学心灵中对数学的恐惧,让同学生长在富有情趣和意义的数学文化氛围中,使数学课堂充溢着文化的气息。
《认识轴对称图形》数学教学反思3
一、创设了一个生动有趣的情境。
古人云:“学起于思,思起于疑”,有疑问才能思考和探究。课堂上教师是教学活动的组织者,教师只有精心设计贴近学生生活、有意义和富有挑战性的问题情境,让学生在心里产生一种悬念,进而达到以疑激学的目的。很多学生在幼儿园和小学低年级的剪纸课上,就已经会用对折的方法剪出左右两边形状、大小完全一样的图形。因此,现实中一些对称的图形学生在课前早已接触过,然而何谓“对称”,这一概念对于学生来说却是新鲜的。由此可见,如何让学生科学地认识并建立“对称”的概念是我这节课要达成的重要目标之一。因此,我设计“出示一个图形的一半让学生猜整个图形,在猜图游戏中最后出现半个花瓶,激发学生想办法剪出一个完整的花瓶”的这样一个活动,有效地帮助学生构建科学的“对称”概念,抓住对称的'本质特征,让学生对“对称”的概念有更清晰的认识,也为其在生活中如何判断对称现象提供方法。
二、开展有序、有效的活动。
1.首先在动手剪对称图形的活动中加深体验。
“剪一剪”的活动,让学生先自己探索剪对称图形的方法,并尝试着剪一剪,当学生有不同的剪法时,可引导学生比一比:谁的剪法好?说说怎样剪,剪出来的图形才能对称?这样,让学生在具体实践活动中很自然地引出“对称轴”的概念。这一活动的开展,以激起学生动手操作的兴趣和欲望为前提,将观察、思考、操作有机的结合,充分感知对称图形及“对称轴”的概念。
2.观察对称现象,感知对称图形。
观察图片讨论:“这些图形有什么共同特点?”接着当学生交流了“这些图形两边都一样”时,教师追问:“你怎样证明它们两边都一样呢?”这时引导学生把图形对折后,发现图形的左右两边重合在了一起,只能看到图形的一半。这一活动的开展,是把学生观察到的形状让学生用对折的方法亲手验证。这一观察——讨论——动手验证的过程。让学生充分感受轴对称图形的特征。
3.在充分的练习中巩固。
给出轴对称图形和对称轴的名称以后,我没有更多的去强调定义。而是出示在学习和生活中常见的汉字、数字、字母、平面图形等让学生去判断是否是对称图形,画出对称轴等练习,让学生在练习中进一步去构建对称轴和轴对称图形的概念。让学生对轴对称图形和对称轴有一个更准确、更深刻的了解。
三、感受数学的美。
数学与生活紧密联系,教学中,要让学生带着数学走出课堂,走进生活去理解生活中的数学,去体验数学的价值。对称的物体给人一种匀称、均衡的感觉,一种美感。本节课我抓住对称图形的特点师生一起欣赏生活中一幅副精美的对称图片,给学生带来美的感受。
【《认识轴对称图形》数学教学反思】相关文章:
《轴对称图形》数学教学反思04-02
小学数学轴对称图形教学反思04-08
《轴对称图形》教学反思11-19
轴对称图形教学反思04-22
轴对称图形教学反思06-12
轴对称图形的教学反思07-18
《轴对称图形》教学反思06-14
《轴对称图形》数学教学反思【优秀2篇】10-09
《轴对称图形》教学反思15篇03-25
《轴对称图形》教学反思(15篇)03-27