- 相关推荐
一次函数性质教学反思(精选3篇)
作为一名优秀的教师,我们要在课堂教学中快速成长,我们可以把教学过程中的感悟记录在教学反思中,教学反思我们应该怎么写呢?下面是小编帮大家整理的一次函数性质教学反思(精选3篇),供大家参考借鉴,希望可以帮助到有需要的朋友。
一次函数性质教学反思1
一、结合实际,引入概念
正确理解数学概念是掌握数学基础知识的前提,是学好定理、公式、法则和数学思想以及提高解题能力的基础,在数学教学过程中,数学概念的教学就尤为重要,对这项活动的把握是自始至终存在的教学难点。
本节课对一次函数、正比例函数的概念学习仅作“了解”要求,故我们根据实际问题列出函数表达式,进一步归纳得出形如y=kx+b(k,b为常数;k≠0)的函数叫做一次函数,特别地,b当b=0时,一次函数叫做正比例函数。在这里教师会引导学生观察x的次数,由此让学生加深对“一次”的理解。然后教师马上举几个例子让学生判断,比如“y=—2x+1”、“y=x2+5”等等。这里大部分学生能够从形式上正确判断,即达到了“了解”目的。
二、直观教学,激发主体探索。
(1)学生用描点法画出一次函数的图象,教师结合PPT展示,让学生从直观上看出一次函数图象是一条直线,进而利用直线公理得出可用两点法画一次函数图象。
(2)借助几何画板的动画演示让学生直接感受并发现一次函数的增减性。当点在直线上运动时,横坐标向右移动而纵坐标向上移动,或者横坐标向右移动而纵坐标向下移动,则形象的理解“y随x的增大而增大”和“y随x的增大而减小”的意义。学生在观看动画的过程中理解函数变化过程的规律,归纳出函数的增减性。
(3)借助几何画板的动画演示让学生直接感受并发现平移的规律,对于相同的k值,随着b值的不同,函数图象上移或下移。学生在观看动画的过程中理解函数图象平移的规律。
三、修正教学设计,改善教学。
【改一】环节一、正比例函数、一次函数的概念
教学设计里只有两个实际问题分别来引入一次函数、正比例函数的概念。需要多加几个实际问题来引入概念,毕竟学生对概念的认识和理解是一个难点。
【改二】环节二、一次函数的图象
原设计中,在归纳出一次函数图象是一条直线后,我们用“两点确定一条直线”公理引出两点法来画一次函数的图象。这里设计不足的是,用这两点画出来的图象就是该一次函数图象吗?如果加上以下的小环节也许就可以解决这个缺陷:
(1)从画出的该直线上取两个点,让学生验证是否满足函数表达式;
(2)由函数表达式取几个点的坐标,判断它们是否在所画的函数图象上。
原设计中,对于增减性的学习。学生先是通过描点法和两点法画了4个一次函数图象,这里学生用了大量的时间来画图,而对于增减性的归纳是通过观看教师所展示的动画得来的,学生自主探索得出性质的时间太少了。如果再加几个一次函数图象让学生画、让学生先自主想想函数图象的特点,可能对于性质的认识会加深。但这样又不够时间来学习平移的有关知识。建议整合知识的时候,本节课先不学习图象的平移。
【改三】环节四、归纳总结
本环节是对一次函数图象关于k、b的性质进行总结,由于前三个环节已经占用了30多分钟了,所以这个环节以教师点评为主,引导性的提问,学生来回答并对完成上图的填空。速度过快,点评不够深入。没能顾及到中下层次的`学生。建议留出让学生自主归纳总结,加深理解,然后再由教师点评。
【改四】环节五、巩固练习
由于本节课整合的知识点较多,而且是平行班教学,新课的学习已经用了35分钟,仅仅剩下10分钟给学生做巩固练习,显得太仓促。建议减少整合的知识点,留够时间给学生做练习。
【改五】课堂秩序需要加强,促进有效教学
有一些学生自顾自的一直在做学习卷,而不管教师的点评与讲解,需要在平常的课堂教学中强调这个问题,强化学生的听课意识。那些一直做题的学生往往是一知半解,不听教师的讲解与点评有碍对知识的全面掌握。
在影响教学有效性的因素中,良好的师生交往是很重要的。良好的教学效果取决于教师和学生双方。学习被看作是一种主动的、合作的建构过程,师生交往永远是教学的核心。所以在师生交往中,仅仅只有学生的自我先行是不够的。合作的、富有创建性的、既能体现教师权威与纪律,又能体现平等的师生交往形式才是有效的。
一次函数性质教学反思2
课程标准对这一节的要求:知识技能方面,理解直线y=kx+b与直线y=kx之间的位置关系;会画出一次函数的图象;掌握一次函数的性质。数学思考方面,通过一次函数图象归纳性质,体验数形结合法的应用;解决问题方面,通过一次函数图象和性质的研究,体会数形结合法在问题解决中的应用,并能运用性质、图象及数形结合法解决相关函数问题。情感态度方面,体会数与形的内在联系,感受函数图象的简洁美;在探究活动中渗透与他人交流、合作的意识和探究精神。本节课教学重点是:一次函数的图象和性质。难点是由一次函数的图象归纳得出一次函数的性质及对性质的理解。
本节课的设计思路是:通过6个活动,在复习正比例函数和一次函数的定义、正比例函数图象和性质的基础上,在同一个直角坐标系中描出正比例函数y=—6x和一次函数y=—6x+5的图象,通过让学生观察比较去体验两者之间的位置关系,得出一次函数的图象是一条直线,并且函数y=kx+b的图象实际是直线y=kx上所有点进行了平移的结果。因为两点确定一条直线,通过活动3明白要做出一次函数的图像只需要选取图象和坐标轴的两个交点坐标就可以了。从而达到掌握一次函数图象的画法的目的。然后在同一直角坐标系中画出四个k和b取不同值的'一次函数的图象,进一步巩固一次函数图象的画法,同时观察k和b的变化引起直线位置和变化趋势的变化,使得一次函数的性质这一教学重点自然浮出水面,水到渠成。再通过学生演板课后练习题,及时反馈教学效果,查缺补漏。设计一个思考题让学有余力的学生对常数b也有一个较为深入的认识。最后通过小结总结回顾学习内容养成整理知识的习惯。选作题设计目的是对作业进行分层要求,使“不同的学生在数学上得到不同的发展”。
成功之处:通过复习旧知,达到承上启下,引入新课之目的,教学内容的设计,由浅入深,循序渐进,通过学生自主学习,合作交流和教师的适度引导点拨,使学生达到“蹦一蹦能摘到桃子的效果”。一次函数K和b对图象、性质的影响。
一次函数性质教学反思3
从这节课的准备来看,针对教学内容从课题的引入、知识的呈现方式、学生的学习活动安排、知识的巩固练习等多方面进行了多次的修改。
通过课堂的实际实施感觉上也不是尽善尽美,还有令人不满意的地方。教师应该通观教材,把握知识的脉络体系,又要站在高于教材的位置统筹安排。这样,教师才能灵活的把握课堂教学。而现在,教师缺乏的正是这一点,还是为了教而教。按部就班,设计的条条框框较多,多了一些稳重,少了一些灵活。而在课堂上,教师面对的是数十名学生,师生之间、生生之间考虑问题的角度、方式要灵活的多、开放的多,有可能教师固定的设计会影响到学生的思维发展。从这一角度讲,教师应在把握知识的基础上。结合学生的表现,灵活多样的处理知识。学生是学习的主体,学生活动是新教材的一大特点。新教材在知识安排上,往往从实例引入,抽象出数学模型。通过学生的观察、分析、比较、归纳,探究知识的发生、发展、形成的过程,得出结论,并能运用解决实际问题。侧重于学生能力的培养,让学生知道学什么,如何学。因此,教学过程中,如何安排学生的学习活动至关重要,本节课,学生活动设计了三个方面。一是通过画函数图象理解一次函数图象的形状,二是两点法画一次函数的图象,三是探究一次函数的图象与k、b符号的关系。
在学生活动中,如何调动学生的积极性、互动性,提高学生活动的.实效性。值得老师们探讨。为了达到上述目的,我结合每个活动,都给学生明确的目的和要求,而且提供操作性很强的程序和题目。如在活动一中,要求学生观察图象的形状,两条直线的位置关系。
在活动二中,强调两点法(直线与坐标轴的交点)画直线。在活动三中,探究k、b符号与直线经过的象限与增减性的关系。学生目标明确,操作性强,受到了较好的效果。本节课的重点是由一次函数的解析式确定函数图象,研究函数性质。由函数图象的位置判断解析式中k、b符号。体现了数学中非常重要地数形结合的思想。这段内容的教学,还是从学生活动出发,从具体的实例研究起,观察图象的位置和性质,在按照k、b的符号分类讨论,使学生建立起数形之间的联系。还要找到数形间的结合点,明确k的符号决定直线的什么位置,b的符号又决定了什么。为了加深学生对知识的理解,课上设计了由解析式画函数图象的草图,由草图的位置判断解析式中k、b的符号的练习,收到了一定的效果。
【一次函数性质教学反思】相关文章:
比的性质教学反思04-09
比的性质教学反思04-07
《小数的性质》教学反思02-03
等式的性质教学反思03-11
小数的性质教学反思03-27
《等式的性质》教学反思04-03
小数的性质教学反思02-08
《等式的性质》教学反思02-01
菱形性质教学反思04-22