精选高一数学教学计划三篇
日子在弹指一挥间就毫无声息的流逝,迎接我们的将是新的生活,新的挑战,来为以后的工作做一份计划吧。那么我们该怎么去写计划呢?以下是小编整理的高一数学教学计划3篇,欢迎大家分享。
高一数学教学计划 篇1
教材分析:
解不等式是不等式学习的主要内容,是中学数学的一项重要技能。主要类型有:一元一次不等式或不等式组的解法,一元二次不等式或不等式组的解法。其中,一次不等式的解法是基础,初中已经学习,二次不等式是重点,也是学习的难点。作为数学重要的工具及方法,经常运用于其它数学知识之中。一元二次不等式的解法主要有二种,课本上介绍的是“数形结合”方法,这种方法将二次函数,二次方程结合为一体,并且借助“图形”直观地得出答案,充分展现了数学知识之间的内在联系,另外也展现了“数形结合”思想方法的巨大魅力。然而,个人认为,还有一种更加自然的方法,将二次不等式转化为一次不等式组的方法,这种方法思路自然,同时也体现了“转化”思想,难度也不大,应该更加符合学生的实际思维及思路。
学情分析:
初中已经学习了一元一次不等式(或组)的解法,积累了一定的解题经验。同时,对于二次方程,二次函数等相关知识学生均较为熟悉。然而,根据自己的调查,一少部分学生对于一元一次不等式及不等式组的解法都表现出一定程度的陌生。进而,可以先从复习简单的一次不等式及不等式组入手加以展开教学。
学生心理方面,学习积极性较高,对数学的学习兴趣、信心也比较理想,有较强的学习动机——考上大学,尽管是外在的诱因。
教学目标:
①知识与技能
熟练掌握一元一次不等式及不等式组的解法,初步学会两种方法求出一元二次不等式的解集
②过程与方法
经历不等式求解的探索及发现过程,体验“数形结合及转化”思想的魅力,掌握方法,学会学习
③情感、态度及价值观
在上述过程中,体验成功,激发了对数学学习的兴趣及信心,发展了对数学学习的积极情感,增强了学习的内在动机
教学重点:
一元二次不等式的解法
教学难点:
解法的探索及发现,关键在于“识图能力”
反思:
今天的课堂,这个难点突破欠缺力量,主要缘于自己备课时对难点考虑不到位,进而缺乏必要的设计。在课堂上,就难点特别与个别差生进行了交流,并且给予了帮助及指导。在指导过程中,我找出了他们困难的二个环节:
首先,对平面曲线上点的横坐标与纵座标之间的对应关系表现陌生,进而对它们的取值变化情况感到费解。
其次,是差生的思维能力尚处于“经验思维”,辩证思维能力薄弱,进而对运动中的点的坐标取值范围只能是“一筹莫展”。
在了解情况后,遵循“最近发展区”原理,以问题串的形式给差生提供必要的帮助后,差生也顺利度过了难关。由此足以说明,从知识的角度而言,“没有教不好的学生,只有不会教的教师:这句话还是相当有道理的。当然,这一切的前提就是对学生“学情”的掌握。美国著名心理学家、结构主义学派的代表人布鲁纳也有类似观点:给我一打健康的儿童,我可以教会他任何任何学科任何年龄段的任何知识。
教学程序:
一、复习一元一次不等式及不等式组的解法
以题组形式设计习题
①2x+3>7
②不等式组
③ax>b
二、创设二次不等式的生活背景实例,引入课题
采用课本上的实例,有关网络收费问题
三、一元二次不等式的解法探索
(1)
在教师的启发引导下,从特殊到一般,学生经历“转化”方法的探索及发现过程。
由于这种方法课本没有给出,进而课堂上不作为重点,重在引导学生自行归纳、体验及总结“转化”思想,最后以课外思考题的形式设计相应习题。
(2)
采取启发式教学,师生共同经历“数形结合”方法的探索及发现过程,引导学生归纳出主要的`解题步骤。今天的课堂上,这些解题步骤全部由学生的语言组织并完成,并撰写在黑板上,教师没有作任何干涉。我一直认为,只有学生自己亲身体验的知识才是有意义的知识,尽管这些知识不完整,语言或许不规范,思维或许不严密。
之后,从特殊到一般,研究一般的二元一次不等式的解法。由于经历了前面的解题过程,这个环节全部放手让学生完成,鼓励他们通过或独立或合作的方式解决学习任务,完成课本上的表格。
反思:根据课堂反馈,二个班级大约有70%的同学能够胜任这个任务。于是,在大多数学生完成的基础上,我又进行了一次讲解,特别加强了对“识图”环节的讲解力度,力求突破难点。
四、练习环节
可以说,即使到了高三,仍然有不少同学对于一元二次不等式解法的困惑。因此,熟练掌握二次不等式的解法,既是重点,也是难点。从学习类型看,这节课显然属于技能课,对于技能的学习及掌握,关键是强化练习,“力求熟能生巧”,达到自动化的水平。
课本上,配置了不少练习题。对于练习,我采取多种方式,或叫学生上黑板板书,借助学生练习规范解题格式;或者口答,说解题思路及答案;或者下面独立练习。
五、课堂小结
知识,思想、方法及感悟等
六、课后作业
①作业设计:分成A、B两层,难度不一,让学生自主选择,均来源于课本上的A组或B组
②课外思考题:
1比较两种解题方法即“转化及数形结合”方法的优劣,以及它们之间的异同
2已知不等式mx^2-(m-2)x+m>0的解集为R,求m的取值范围
变式一:戓将R改为空集,此时结论如何
变式二:仿上,自己改编条件,并解之。
反思:课外思考题的设计,可以提升课堂容量,深化课堂知识,提高课堂思维含量,为优生服务,发展学生的思维能力,激发他们的学习兴趣。同时,加强变式教学,可以充分拓展习题的潜在价值,期望实现“举一反三”的目标。
高一数学教学计划 篇2
针对我校高一学生的具体情况,我在高一数学新教材教学实践与探究中,贯彻因人施教,因材施教原则。以学法指导为突破口;着重在读、讲、练、辅、作业等方面下功夫,取得一定效果。
加强学法指导,培养良好学习习惯。良好的学习习惯包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
制定计划使学习目的明确,时间安排合理,不慌不忙,稳扎稳打,它是推动学生主动学习和克服困难的内在动力。但计划一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。
课前自学是学生上好新课,取得较好学习效果的基础.课前自学不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习主动权.自学不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲课的思路,把握重点,突破难点,尽可能把问题解决在课堂上。
上课是理解和掌握基本知识、基本技能和基本方法的关键环节。学然后知不足,课前自学过的同学上课更能专心听课,他们知道什么地方该详,什么地方可略;什么地方该精雕细刻,什么地方可以一带而过,该记的地方才记下来,而不是全抄全录,顾此失彼。
及时复习是高效率学习的重要一环,通过反复阅读教材,多方查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比较,一边复习一边将复习成果整理在笔记上,使对所学的新知识由懂到会。
独立作业是学生通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程.这一过程是对学生意志毅力的考验,通过运用使学生对所学知识由会到熟。
解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程.解决疑难一定要有锲而 不舍的精神,做错的作业再做一遍。对错误的地方没弄清楚要反复思考,实在解决不了的要请教老师和同学,并要经常把易错的地方拿出来复习强化,作适当的重复 性练习,把求老师问同学获得的东西消化变成自己的知识,长期坚持使对所学知识由熟到活。
系统小结是学生通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节.小结要在系统复习的基础上以教材为依据,参照笔记与有关资料, 通过分析、综合、类比、概括,揭示知识间的内在联系.以达到对所学知识融会贯通的目的.经常进行多层次小结,能对所学知识由活到悟。
课外学习包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等.课外学习是课内学习的补充和继续,它不仅能丰富学生的文化科学知识,加深和巩固课内所学的知识,而且能满足和发展他们的兴趣爱好,培养独立学习和工作能力,激发求知欲与学习热情。
1、读。俗话说不读不愤,不愤不悱。首先要读好概念。读概念要咬文嚼字,掌握概念内涵和外延及辨析概念。例如,集合是数学中的一个原始概 念,是不加定义的。它从常见的我校高一年级学生 、我家的家用电器、太平洋、大西洋、印度洋、北冰洋及自然数等事物中抽象出来,但集合的概念又不同于特殊具体的实物集合,集合的确定及性质特 征是由一组公理来界定的。确定性、无序性、互异性常常是集合的代名词。
再如象限角的概念,要向学生解释清楚,角的始边与x轴的非负半轴重合和与x轴的正半轴重合的细微差别;根据定义如果终边不在某一象限则不能称为象限 角等等。这样可以引导学生从多层次,多角度去认识和掌握数学概念。其次读好定理公式和例题。阅读定理公式时,要分清条件和结论。如高一新教材(上)等比数 列的前n项和Sn.有q1和q=1两种情形;对数计算中的一个公式,其中要求读例题时,要注重审题分析,注意题中的隐含条件,掌握解题的方法和书写规 范。如在解对数函数题时,要注意真数大于0的隐含条件;解有关二次函数题时要注意二次项系数不为零的隐含条件等。读书要鼓励学生相互议论。俗语说议 一议知是非,争一争明道理。例如,让学生议论数列与数集的联系与区别。数列与数的集合都是具有某种共同属性的全体。数列中的数是有顺序的,而数集中的元 素是没有顺序的;同一个数可以在数列中重复出现,而数集中的元素是没有重复的(相同的数在数集中算作同一个元素)。在引导学生阅读时,教师要经常帮助学生 归类、总结,尽可能把相关知识表格化。如一元二次不等式的解情况列表,三角函数的图象与性质列表等,便于学生记忆掌握。
2、讲。外国有一位教育家曾经说过:教师的作用在于将冰冷的知识加温后传授给学生。讲是实践这种传授的最直接和最有效的教学手段。首先讲要注意 循序渐进的原则。循序渐进,防止急躁。由于学生年龄较小,阅历有限,为数不少的高中学生容易急躁,有的同学贪多求快,囫囵吞枣,有的同学想靠几天冲刺 一蹴而就,有的取得一点成绩便洋洋自得,遇到挫折又一蹶不振。针对这些情况,教师要让学生懂得学习是一个长期的巩固旧知识、发现新知识的积累过程,决非一 朝一夕可以完成,为什么高中要上三年而不是三天!许多优秀的同学能取得好成绩,其中一个重要原因是他们的基本功扎实,他们的阅读、书写、运算技能达到了自 动化或半自动化的熟练程度。
每堂新授课中,在复习必要知识和展示教学目标的基础上,老师着重揭示知识的产生、形成、发展过程,解决学生疑惑。比如在学习两角和差公式之前,学生 已经掌握五套诱导公式,可以将求任意角三角函数值问题转化为求某一个锐角三角函数值的问题。此时教师应进一步引导学生:对于一些半特殊的教(750 度,150度等)能不能不通过查表而求出精确值呢?这样两角和差的三角函数就呼之欲出了,极大激发了学生的学习兴趣。讲课要注意从简单到复杂的过程,要让 学生从感性认识上升到理性认识。鼓励学生应积极、主动参与课堂活动的全过程,教、学同步。让学生自己真正做学习的主人。
例如,讲解函数的图象应从振幅、周期、相位依次各自进行变化,然后再综合,并尽可能利用多媒体辅助教学,使学生容易接受。其次讲要注重突出数学思想 方法的教学,注重学生数学能力的培养。例如讲到等比数列的概念、通项公式、等比中项、等比数列的性质、等比数列的前n项和。可以引导学生对照等差数列的相 应的内容,比较联系。让学生更清楚等差数列和等比数列是两个对偶概念。
3、练。数学是以问题为中心。学生怎么应用所学知识和方法去分析问题和解决问题,必须进行练习。首先练习要重视基础知识和基本技能,切忌过早地进行 高、深、难练习。鉴于目前我校高一的`生源现状,基础训练是很有必要的。课本的例题、练习题和习题要求学生要题题过关;补充的练习,应先是课本中练习及 习题的简单改造题,这有利于学生巩固基础知识和基本技能。让学生通过认真思考可以完成。即让学生跳一跳可以摸得着。一定要让学生在练习中强化知识、应 用方法,在练习中分步达到教学目标要求并获得再练习的兴趣和信心。例如根据数列前几项求通项公式练习,在新教材高一(上)P111例题2上简单地做一些改 造,便可以变化出各种求解通项公式方法的题目;再如数列复习参考题第12题;就是一个改造性很强的数学题,教师可以在上面做很多文章。其次要讲练结合。学 生要练习,老师要评讲。多讲解题思路和解题方法,其中包括成功的与错误的。特别是注意要充分暴露错误的思维发生过程,在课堂造就民主气氛,充分倾听学生意 见,哪怕走点弯路 ,吃点苦头另一方面,则引导学生各抒己见,评判各方面之优劣,最后选出大家公认的最佳方法。还可适当让学生涉及一些一题多解的题目,拓展思维空间, 培养学生思维的多面性和深刻性。
例如,高一(下)P26例5求证 。可以从一边证到另一边,也可以作差、作商比较,还可以用分析法来证明;再如解不等式。常用的解法是将无理不等式化为有理不等式求解。但还可以利用换元 法,将无理不等式化为关于t的一元二次不等式求解。除此之外,亦可利用图象法求解。在同一直角坐标系中作出它们的图像。求两图在x轴上方的交点的横坐标为 2,最终得解。要求学生掌握通解通法同时,也要讲究特殊解法。最后练习要增强应用性。例如用函数、不等式、数列、三角、向量等相关知识解实际应用题。引导 学生学会建立数学模型,并应用所学知识,研究此数学模型。
4、作业。鉴于学生现有的知识、能力水平差异较大,为了使每一位学生都能在自己的最近发展区更好地学习数学,得到最好的发展,制定分层次作 业。即将作业难度和作业量由易到难分成A、B、C三档,由学生根据自身学习情况自主选择,然后在充分尊重学生意见的基础上再进行协调。以后的时间里,根 据学生实际学习情况,随时进行调整。
5、辅导。辅导指两方面,培优和补差。对于数学尖子生,主要培养其自学能力、独立钻研精神和集体协作能力。具体做法:成立由三至六名学生组成的讨论 组,教师负责为他们介绍高考、竞赛参考书,并定期提供学习资料和咨询、指导。下面着重谈谈补差工作。辅导要鼓励学生多提出问题,对于不能提高的同学要从平 时作业及练习考试中发现问题,跟踪到人,跟踪到具体知识。要有计划,有针对性和目的性地辅导,切忌冷饭重抄和无目标性。要及时检查辅导效果,做到学生人人 知道自己存在问题(越具体越好),老师对辅导学生情况要了如指掌。对学有困难的同学,要耐心细致辅导,还要注意鼓励学生战胜自己,提高自已的分析和解决问 题的能力。
高一数学教学计划 篇3
教学目标
1通过对幂函数概念的学习以及对幂函数图象和性质的归纳与概括,让学生体验数学概念的形成过程,培养学生的抽象概括能力。
2使学生理解并掌握幂函数的图象与性质,并能初步运用所学知识解决有关问题,培养学生的灵活思维能力。
3培养学生观察、分析、归纳能力。了解类比法在研究问题中的作用。
教学重点、难点
重点:幂函数的性质及运用
难点:幂函数图象和性质的发现过程
教学方法:问题探究法 教具:多媒体
教学过程
一、创设情景,引入新课
问题1:如果张红购买了每千克1元的水果w千克,那么她需要付的钱数p(元)和购买的水果量w(千克)之间有何关系?
(总结:根据函数的定义可知,这里p是w的函数)
问题2:如果正方形的边长为a,那么正方形的面积 ,这里S是a的函数。 问题3:如果正方体的边长为a,那么正方体的体积 ,这里V是a的函数。 问题4:如果正方形场地面积为S,那么正方形的边长 ,这里a是S的函数 问题5:如果某人 s内骑车行进了 km,那么他骑车的速度 ,这里v是t的函数。
以上是我们生活中经常遇到的几个数学模型,你能发现以上几个函数解析式有什么共同点吗?(右边指数式,且底数都是变量) 这只是我们生活中常用到的一类函数的几个具体代表,如果让你给他们起一个名字的话,你将会给他们起个什么名字呢?(变量在底数位置,解析式右边都是幂的形式)(适当引导:从自变量所处的位置这个角度)(引入新课,书写课题)
二、新课讲解
由学生讨论,(教师可提示p=w可看成p=w1)总结,即可得出:p=w, s=a2, a=s , v=t-1都是自变量的若干次幂的形式。
教师指出:我们把这样的都是自变量的若干次幂的形式的函数称为幂函数。
幂函数的定义:一般地,我们把形如 的函数称为幂函数(power function),其中 是自变量, 是常数。 1幂函数与指数函数有什么区别?(组织学生回顾指数函数的概念) 结论:幂函数和指数函数都是我们高中数学中研究的两类重要的基本初等函数,从它们的解析式看有如下区别: 对幂函数来说,底数是自变量,指数是常数 对指数函数来说,指数是自变量,底数是常数 例1判别下列函数中有几个幂函数?
① y= ②y=2x2 ③y=x ④y=x2+x ⑤y=-x3 ⑥ ⑦ ⑧ ⑨ (由学生独立思考、回答)
2幂函数具有哪些性质?研究函数应该是哪些方面的内容。前面指数函数、对数函数研究了哪些内容?
(学生讨论,教师引导。学生回答。)
3幂函数的定义域是否与对数函数、指数函数一样,具有相同的定义域?
(学生小组讨论,得到结论。引导学生举例研究。结论:幂指数 不同,定义域并不完全相同,应区别对待。)教师指出:幂函数y=xn中,当n=0时,其表达式y=x0=1;定义域为(-∞,0)U(0,+∞),特别强调,当x为任何非零实数时,函数的值均为1,图象是从点(0,1)出发,平行于x轴的两条射线,但点(0,1)要除外。)
例2写出下列函数的定义域,并指出它们的奇偶性:①y=x ②y= ③y=x ④y=x
(学生解答,并归纳解决办法。引导学生与指数函数、对数函数对照比较。引导学生具体问题具体分析,并作简单归纳:分数指数应化成根式,负指数写成正数指数再写出定义域。幂函数的奇偶性也应具体分析。)
4上述函数①y=x ②y= ③y=x ④y=x 的单调性如何?如何判断?
(学生思考,引导作图可得。并加上y=x 和y=x-1图象)接下来, 在同一坐标系中学生作图,教师巡视。将学生作图用实物投影仪演示,指出优点和错误之处。教师利用几何画板演示。见后附图1
让学生观察图象,看单调性、以及还有哪些共同点?(学生思考,回答。教师注意学生叙述的'严密性。)
教师总评:幂函数的性质
(1)所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1),
(2)如果a>0,则幂函数的图象通过原点,并在区间[0,+∞)上是增函数,
(3)如果a<0,则幂函数在(0,+∞)上是减函数,在第一区间内,当x从右边趋向于原点时,图象在y轴右方无限地趋近y轴;当x趋向于+∞,图象在x轴上方无限地趋近x轴。
5通过观察例1,在幂函数y=xa中,当a是(1)正偶数、(2)正奇数时,这一类函数有哪种性质?
学生思考,教师讲评:(1)在幂函数y=xa中,当a是正偶数时,函数都是偶函数,在第一象限内是增函数。(2)在幂函数y=xa中,当a是正奇数时,函数都是奇函数,在第一象限内是增函数。
例3巩固练习 写出下列函数的定义域,并指出它们的奇偶性和单调性:①y=x ②y=x ③y=x 。
例4简单应用1:比较下列各组中两个值的大小,并说明理由:
①0.75 ,0.76 ;
②(-0.95) ,(-0.96) ;
③0.23 ,0.24 ;
④0.31 ,0.31
例5简单应用2:幂函数y=(m -3m-3)x 在区间 上是减函数,求m的值。
例6简单应用2:
已知(a+1)<(3-2a) ,试求a的取值范围。
课堂小结
今天的学习内容和方法有哪些?你有哪些收获和经验?
1、 幂函数的概念及其指数函数表达式的区别 2、 常见幂函数的图象和幂函数的性质。
布置作业:
课本p.73 2、3、4、思考5