乐文网>教学资源>教学计划>高一数学教学计划

高一数学教学计划

时间:2023-03-24 11:07:28 教学计划 我要投稿

高一数学教学计划精选15篇

  时间的脚步是无声的,它在不经意间流逝,我们的工作同时也在不断更新迭代中,做好计划可是让你提高工作效率的方法喔!拟起计划来就毫无头绪?下面是小编精心整理的高一数学教学计划,仅供参考,希望能够帮助到大家。

高一数学教学计划精选15篇

高一数学教学计划1

  教学目标

  1通过对幂函数概念的学习以及对幂函数图象和性质的归纳与概括,让学生体验数学概念的形成过程,培养学生的抽象概括能力。

  2使学生理解并掌握幂函数的图象与性质,并能初步运用所学知识解决有关问题,培养学生的灵活思维能力。

  3培养学生观察、、归纳能力。了解类比法在研究问题中的作用。

  教学重点、难点

  重点:幂函数的性质及运用

  难点:幂函数图象和性质的发现过程

  教学方法:

  问题探究法教具:多媒体

  教学过程

  一、创设情景,引入新课

  问题1:如果张红购买了每千克1元的水果w千克,那么她需要付的钱数p(元)和购买的水果量w(千克)之间有何关系?

  (总结:根据函数的定义可知,这里p是w的函数)

  问题2:如果正方形的边长为a,那么正方形的面积,这里S是a的函数。

  问题3:如果正方体的边长为a,那么正方体的体积,这里V是a的函数。

  问题4:如果正方形场地面积为S,那么正方形的边长,这里a是S的函数问题5:如果某人s内骑车行进了km,那么他骑车的速度,这里v是t的函数。

  以上是我们生活中经常遇到的几个数学模型,你能发现以上几个函数解析式有什么共同点吗?(右边指数式,且底数都是变量)这只是我们生活中常用到的一类函数的几个具体代表,如果让你给他们起一个名字的.话,你将会给他们起个什么名字呢?(变量在底数位置,解析式右边都是幂的形式)(适当引导:从自变量所处的位置这个角度)(引入新课,书写课题)

  二、新课讲解

  由学生讨论,(教师可提示p=w可看成p=w1)总结,即可得出:p=w, s=a2, a=s , v=t-1都是自变量的若干次幂的形式。

  教师指出:我们把这样的都是自变量的若干次幂的形式的函数称为幂函数。

  幂函数的定义:一般地,我们把形如的函数称为幂函数(power function),其中是自变量,是常数。 1幂函数与指数函数有什么区别?(组织学生回顾指数函数的概念)结论:幂函数和指数函数都是我们高中数学中研究的两类重要的基本初等函数,从它们的解析式看有如下区别:对幂函数来说,底数是自变量,指数是常数对指数函数来说,指数是自变量,底数是常数例1判别下列函数中有几个幂函数?

  ① y= ②y=2x2 ③y=x ④y=x2+x ⑤y=-x3 ⑥ ⑦ ⑧ ⑨ (由学生思考、回答)

  2幂函数具有哪些性质?研究函数应该是哪些方面的内容。前面指数函数、对数函数研究了哪些内容?

  (学生讨论,教师引导。学生回答。)

  3幂函数的定义域是否与对数函数、指数函数一样,具有相同的定义域?

  (学生小组讨论,得到结论。引导学生举例研究。结论:幂指数不同,定义域并不完全相同,应区别对待。)教师指出:幂函数y=xn中,当n=0时,其表达式y=x0=1;定义域为(-∞,0)U(0,+∞),特别强调,当x为任何非零实数时,函数的值均为1,图象是从点(0,1)出发,平行于x轴的两条射线,但点(0,1)要除外。)

  例2写出下列函数的定义域,并指出它们的奇偶性:①y=x ②y= ③y=x ④y=x

  (学生解答,并归纳解决办法。引导学生与指数函数、对数函数对照比较。引导学生具体问题具体,并作简单归纳:分数指数应化成根式,负指数写成正数指数再写出定义域。幂函数的奇偶性也应具体。)

  4上述函数①y=x ②y= ③y=x ④y=x的单调性如何?如何判断?

  (学生思考,引导作图可得。并加上y=x和y=x-1图象)接下来,在同一坐标系中学生作图,教师巡视。将学生作图用实物投影仪演示,指出优点和错误之处。教师利用几何画板演示。见后附图1

  让学生观察图象,看单调性、以及还有哪些共同点?(学生思考,回答。教师注意学生叙述的严密性。)

  教师总评:幂函数的性质

  (1)所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1),

  (2)如果a>0,则幂函数的图象通过原点,并在区间[0,+∞)上是增函数,

  (3)如果a<0,则幂函数在(0,+∞)上是减函数,在第一区间内,当x从右边趋向于原点时,图象在y轴右方无限地趋近y轴;当x趋向于+∞,图象在x轴上方无限地趋近x轴。

  5通过观察例1,在幂函数y=xa中,当a是(1)正偶数、(2)正奇数时,这一类函数有哪种性质?

  学生思考,教师讲评:(1)在幂函数y=xa中,当a是正偶数时,函数都是偶函数,在第一象限内是增函数。(2)在幂函数y=xa中,当a是正奇数时,函数都是奇函数,在第一象限内是增函数。

  例3巩固练习写出下列函数的定义域,并指出它们的奇偶性和单调性:①y=x ②y=x ③y=x 。

  例4简单应用1:比较下列各组中两个值的大小,并说明理由:

  ①0.75,0.76 ;

  ②(-0.95),(-0.96) ;

  ③0.23,0.24 ;

  ④0.31,0.31

  例5简单应用2:幂函数y=(m -3m-3)x在区间上是减函数,求m的值。

  例6简单应用2:

  已知(a+1)<(3-2a) ,试求a的取值范围。

  课堂小结

  今天的学习内容和方法有哪些?你有哪些收获和经验?

  1、幂函数的概念及其指数函数表达式的区别2、常见幂函数的图象和幂函数的性质。

  布置作业:

  课本p.73 2、3、4、思考5

高一数学教学计划2

  一 指导思想

  为了使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下:

  1.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

  2.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力

  3.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

  4.提高学习的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

  二 学情分析

  1. 基本情况:班共人,男生人,女生人;本班相对而言,数学尖子约人,中上等生约人,中等生约人,中下生约 人,后进生约人。

  2.我所执教的215班均属普高班,学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。

  三 教材分析

  我们采用的教材是人教版必修教材,本册教材共分两章:第四章《三角函数》和第五章《平面向量》。三角函数的主要内容有:任意角的三角函数概念、弧度制、同角三角函数间的关系、诱导公式、两角和与差的三角函数、二倍角的三角函数以及三角函数的图象和性质、已知三角函数值求角等。难点是弧度制的概念、综合运用本章公式进行简单三角函数式的化简及恒等式的证明周期函数的概念,函数y=Asin(x+)的图象与正弦曲线的关系。平面向量主要内容是向量及其运算和解斜三角形,向量的几何表示和坐标表示、向量的线性运算,平面向量的数量积,平面两点间的距离公式,线段的定比分点和中点坐标公式,平移公式,解斜三角形是本章的重点,而向量运算法则的理解和运用,已知两边和其中一边的对角解斜三角形等是本章的难点。

  四 教法分析

  在教学过程中尽量做到以下几个方面:

  1. 选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的。

  2. 通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

  3. 在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

  五 教学及辅导措施

  1. 激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

  2. 注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的.概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

  3. 加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

  4. 抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

  5. 自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。

  6. 重视数学应用意识及应用能力的培养。

  六 优、差生名单及辅导措施

  1. 对于优生:学生自愿成立兴趣小组,兴趣小组可以在老师的指导下由学生自己不定期的开展活动,围绕数学竞赛拓展他们的知识面,加深对所学知识的理解和应用,在原有基础上,稳定班级在数学学习钟的尖子学生,进一步培养他们自主学习的意识。

  2. 对于待发展生:对于成绩较差的学生,针对他们的基础差异和个性差异,耐心细致的进行个别辅导,有问题随时解决,并多予以鼓励。在作业中体现分层。尽量做到因材施教。

  七 教学进度安排

周 次




课时




内 容




重 点、难 点




第1周




5




任意角和弧度制(2)




任意角的三角函数(3)




了解任意角的概念和弧度制,能进行弧度与角度的互化。任意角三角函数的定义。




第2周




5




同角三角函数的基本关系式(3)




三角函数的诱导公式(2)




诱导公式的探究。运用诱导公式。




第3周




5




两角和与差的正弦、余弦、正切 (5)




两角和与差的公式及其应用与求值、化简




第4周




5




二倍角的正弦、余弦、正切 (3)




正、余弦函数的图象(2)




三角函数的倍角公式、和差化积公式




正、余弦函数图象的画法




第5周




5




三角函数图象与性质(4)




三角函数的图象及其性质。函数思想。




第6周




5




函数y=sin(+)的图象(2)、三角函数模型的简单应用(2)




用参数思想讨论图象的变换过程。用三角模型解决一些具有周期变化规律的实际问题。难点:实际问题抽象为三角函数模型




第7周




5




正切函数的图象和性质(3)




已知三角函数值求角(2)




正切函数的图象和性质




反三角函数的表示




第8周




5




三角函数单元复习




知识点的复习+练习卷




第9周




5




平面向量的实际背景及基本概念(2)、平面向量的线性运算(2)




向量的概念。相等向量的概念。向量的几何表示。向量加、减法的运算及几何意义。向量数乘运算及几何意义。




第10周




5




平面向量的基本定理及坐标表示(2)




平面向量的数量积(2)




平面向量基本定理。会用平面向量数量积的表示向量的模与夹角。




第11周




5




平面向量的应用举例(2)




用向量方法解决实际问题的方法。向量方法解决几何问题的三步曲。




第12周




5




向量平移、正弦定理、余弦定理




向量平移的公式




第13周




5




简单的三角恒等变换(3)




第三章小结(1)




以11个公式为依据,推导和差化积、积化和差等公式,会进行三角变换。




第14周




5




期末复习





第15周




5




期末复习




分章归纳复习+3套模拟测试




高一数学教学计划3

  一、指导思想

  以课程改革为中心,以课堂教学为主渠道,以数学课程标准为依据,以课题研究为抓手,以教师专业化成长为主线,让日常教学成为教师自身成长的载体。激发学生学习兴趣,树立自信心,深化课堂教学改革,提高教育教学质量与教育内涵。鉴于此,我们当举全组之力,充分发挥团队精神,既分工又合作,立足高考,保质保量地完成教育教学任务,在原来良好的基础上锦上添花。

  二.工作目标

  1.全组成员精诚团结,互相关心,互相支持,弘扬一种同志加兄弟的同仁关系,力争使我们高一数学备课组成为一个充满活力的优秀集体。

  2.不拘形式不拘时间地点的加强交流,互相之间取长补短,与时俱进,教学相长。

  3.在日常工作当中,既保持和优化个人特色,又实现资源共享,同类班级的相关工作做到基本统一。

  三.主要措施

  1.明确一个观念:

  高考好才是真的好。平时不好高考肯定不好,但平时红旗飘飘高考时未必红旗不倒。这就要求我们在日常工作中在照顾到学生实际的前提下起点? ? ? ?要高,注意培养后劲,从整体上把握好的`自己的教学。

  2.以老师的精心备课与充满的教学,换取学生学习高效率。

  3.将学校和教研组安排的有关工作落到实处。

  4.落实培辅工作,为高三铺路!教育要从娃娃抓起,那么对难于上青天的教学我们应当从今天抓起。

  四.活动设想

  1.按时完成学校(教导处,教科室)相关工作。

  2.轮流出题,讲求命题质量,分章节搞好集体备课,形成电子化文稿。

  3.每月集体备课一次,每次有中心发言人,每月组织进行教学研讨一次。

  4.互相听课,以人之长,补己之短,完善自我。

  5.认真组织好培优辅差工作以及市数学竞赛的辅导工作。

高一数学教学计划4

  平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形 。

  教学目标

  (1)掌握由一点和斜率导出直线方程的方法,掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出直线的方程.

  (2)理解直线方程几种形式之间的内在联系,能在整体上把握直线的方程.

  (3)掌握直线方程各种形式之间的互化.

  (4)通过直线方程一般式的教学培养学生全面、系统、周密地分析、讨论问题的能力.

  (5)通过直线方程特殊式与一般式转化的教学,培养学生灵活的思维品质和辩证唯物主义观点.

  (6)进一步理解直线方程的概念,理解直线斜率的意义和解析几何的思想方法.

  教学建议

  1.教材分析

  (1)知识结构

  由直线方程的概念和直线斜率的概念导出直线方程的点斜式;由直线方程的点斜式分别导出直线方程的斜截式和两点式;再由两点式导出截距式;最后都可以转化归结为直线的一般式;同时一般式也可以转化成特殊式.

  (2)重点、难点分析

  ①本节的重点是直线方程的点斜式、两点式、一般式,以及根据具体条件求出直线的方程.

  解析几何有两项根本性的任务:一个是求曲线的方程;另一个就是用方程研究曲线.本节内容就是求直线的方程,因此是非常重要的内容,它对以后学习用方程讨论直线起着直接的作用,同时也对曲线方程的学习起着重要的作用.

  直线的点斜式方程是平面解析几何中所求出的第一个方程,是后面几种特殊形式的源头.学生对点斜式学习的效果将直接影响后继知识的学习.

  ②本节的难点是直线方程特殊形式的限制条件,直线方程的整体结构,直线与二元一次方程的关系证明.

  2.教法建议

  (1)教材中求直线方程采取先特殊后一般的思路,特殊形式的方程几何特征明显,但局限性强;一般形式的方程无任何限制,但几何特征不明显.教学中各部分知识之间过渡要自然流畅,不生硬.

  (2)直线方程的一般式反映了直线方程各种形式之间的统一性,教学中应充分揭示直线方程本质属性,建立二元一次方程与直线的对应关系,为继续学习曲线方程打下基础.

  直线一般式方程都是字母系数,在揭示这一概念深刻内涵时,还需要进行正反两方面的分析论证.教学中应重点分析思路,还应抓住这一有利时使学生学会严谨科学的分类讨论方法,从而培养学生全面、系统、辩证、周密地分析、讨论问题的'能力,特别是培养学生逻辑思维能力,同时培养学生辩证唯物主义观点

  (3)在强调几种形式互化时要向学生充分揭示各种形式的特点,它们的几何特征,参数的意义等,使学生明白为什么要转化,并加深对各种形式的理解.

  (4)教学中要使学生明白两个独立条件确定一条直线,如两个点、一个点和一个方向或其他两个独立条件.两点确定一条直线,这是学生很早就接触的几何公理,然而在解析几何,平面向量等理论中,直线或向量的方向是极其重要的要素,解析几何中刻画直线方向的量化形式就是斜率.因此,直线方程的两点式和点斜式在直线方程的几种形式中占有很重要的地位,而已知两点可以求得斜率,所以点斜式又可推出两点式(斜截式和截距式仅是它们的特例),因此点斜式最重要.教学中应突出点斜式、两点式和一般式三个教学高潮.

  求直线方程需要两个独立的条件,要依不同的几何条件选用不同形式的方程.根据两个条件运用待定系数法和方程思想求直线方程.

  (5)注意正确理解截距的概念,截距不是距离,截距是直线(也是曲线)与坐标轴交点的相应坐标,它是有向线段的数量,因而是一个实数;距离是线段的长度,是一个正实数(或非负实数).

  (6)本节中有不少与函数、不等式、三角函数有关的问题,是函数、不等式、三角与直线的重要知识交汇点之一,教学中要适当选择一些有关的问题指导学生练习,培养学生的综合能力.

  (7)直线方程的理论在其他学科和生产生活实际中有大量的应用.教学中注意联系实际和其它学科,教师要注意引导,增强学生用数学的意识和能力.

  (8)本节不少内容可安排学生自学和讨论,还要适当增加练习,使学生能更好地掌握,而不是仅停留在观念上.

高一数学教学计划5

  一、教学目标:

  1.通过高速公路上的实际例子,引起积极的思考和交流,从而认识到生活中处处可以遇到变量间的依赖关系.能够利用初中对函数的认识,了解依赖关系中有的是函数关系,有的则不是函数关系.

  2.培养广泛联想的能力和热爱数学的态度.

  二、教学重点:

  在于让学生领悟生活中处处有变量,变量之间充满了关系

  教学难点:培养广泛联想的能力和热爱数学的态度

  三、教学方法:

  探究交流法

  四、教学过程

  (一)、知识探索:

  阅读课文P25页。实例:书上在高速公路情境下的问题。

  在高速公路情景下,你能发现哪些函数关系?

  2.对问题3,储油量v对油面高度h、油面宽度w都存在依赖关系,两种依赖关系都有函数关系吗?

  问题小结:

  1.生活中变量及变量之间的依赖关系随处可见,并非有依赖关系的两个变量都有函数关系,只有满足对于一个变量的每一个值,另一个变量都有确定的.值与之对应,才称它们之间有函数关系。

  2.构成函数关系的两个变量,必须是对于自变量的每一个值,因变量都有确定的y值与之对应。

  3.确定变量的依赖关系,需分清谁是自变量,谁是因变量,如果一个变量随着另一个变量的变化而变化,那么这个变量是因变量,另一个变量是自变量。

  (二)、新课探究——函数概念

  1.初中关于函数的定义:

  2.从集合的观点出发,函数定义:

  给定两个非空数集A和B,如果按照某个对应关系f,对于A中的任何一个数x,在集合B中都存在确定的数f(x)与之对应,那么就把这种对应关系f叫做定义在A上的函数,记作或f:A→B,或y=f(x),x∈A.;

  此时x叫做自变量,集合A叫做函数的定义域,集合{f(x)︱x∈A}叫作函数的值域。习惯上我们称y是x的函数。

  定义域,值域,对应法则

  4.函数值

  当x=a时,我们用f(a)表示函数y=f(x)的函数值。

高一数学教学计划6

  一、指导思想:

  在学校教学工作意见指导下,认真落实学校对备课组工作的各项要求,严格执行学校的各项教育教学制度和要求,强化数学教学研究,提高全组老师的教学、教研水平,明确任务,团结协作,圆满完成教学教研任务。

  二、教材简析

  本学期仍然使用人教版《普通高中课程标准实验教科书·数学(A版)》教材,在坚持我校数学教育优良传统的前提下,在学生九年义务教育数学课程的基础上,进一步提高学生所必要的数学素养,以满足学生的发展与社会进步的需要,认真处理继承、借鉴、发展、创新之间的关系,体现基础性、时代性、典型性和可接受性等,具有亲和力、问题性、科学性、思想性、应用性、联系性等特点。

  三、教学任务

  本学期授课内容:必修一、必修二

  四、学生基本情况及教学目标

  学生基本情况:本届学生普遍基础较差,学习自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。其次,学生的计算能力太差,学生不喜欢去算题,嫌麻烦,因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,因为学生底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。

  教学目标:认真贯彻高中数学新课标精神,树立新的教学理念,以“双基”教学为主要内容,坚持“抓两头、带中间、整体推进”,使每个学生的数学能力都得到提高和发展。高一学生共有20个班,分两个教学层次,每层个10个班。实验班的学生可根据实际情况提高教学目标。平行班学生的主要任务有两点,第一点:保证重点学生的数学成绩稳步上升,成为学生的优势科目;第二点:加强数学学习比较困难学生的辅导培养,增加其信息并逐步缩小数学成绩差距。

  五、教法分析:

  1、选取与内容密切相关的,典型的,丰富的和学生熟悉的课堂素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。

  2、通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。 3、在教学中引导学生通过类比,推广,特殊化,化归等方法,尽可能培养学生逻辑思维的习惯。

  六、教学措施:

  1、认真落实,搞好集体备课。每周进行一次集体备课。各位老师根据自已承担的任务,提前一周进行单元式的'备课,并出好本周的练习活页。教研会时,由一名老师作主要发言人,对本周的教材内容作分析,然后大家研究讨论其中的重点、难点、教学方法等。

  2、详细计划,保证练习质量。教学中用配备资料《导学案》,要求学生按教学进度完成相应的习题,教师要提前向学生指出不做的题,以免影响学生的时间,每周以内容“滚动式”编一份练习试卷,学生完成后老师要收齐批改,对存在的普遍性问题要安排时间讲评。

  3、抓好第二课堂,稳定数学优生,培养数学能力兴趣。尖尖班的教学进度可适当调整,教学难度要有所提升;其他各班要培育好本班的优生,注意激发学生的学习兴趣,随时注意学生学习方法的指导。备课组也将组织学生上培优班。

  4、加强辅导工作。对已经出现数学学习困难的学生,教师的下班辅导十分重要。教师教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,既要注意照顾好班上优生层,更不能忽视班上的困难学生。

  附:教学进度计划

  第一周集合

  第二周函数及其表示

  第三周函数的基本性质

  第四周指数函数

  第五周对数函数

  第六周幂函数

  第七周函数与方程

  第八周函数的应用

  第九周期中考试

  第十至十一周空间几何体

  第十二周点,直线,面之间的位置关系

  第十三至十四周直线与平面平行与垂直的判定与性质

  第十五至十六周直线与方程

  第十七至十八周周圆与方程

  第十九至二十周期末考试

高一数学教学计划7

  本学期担任高一(14)班的数学教学工作,本班学生有58人,学生人数比较多,上课难度比较大,还有各学生中考成绩普遍较差,也给教学带来一定的难度,初中的基础参差不齐,但班上学生整体水平还可以;部分学生学习习惯不好,很多学生不能正确评价自己,这给教学工作带来了一定的难度,为把本学期教学工作做好,制定如下教学工作计划。

  一、教学内容

  本学期将完成“数学必修1”和“数学必修4”(人教版)两本教材的学习,教学辅助材料有《同步导学》。

  二、教学目标与要求

  必修1,主要涉及两章内容:

  第一章集合

  通过本章学习,使学生感受到用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言表示数学对象,为以后的学习奠定基础。

  1.了解集合的含义,体会元素与集合的属于关系,并初步掌握集合的表示方法;

  2.理解集合间的包含与相等关系,能识别给定集合的子集,了解全集与空集的含义;

  3.理解补集的含义,会求在给定集合中某个集合的补集;4.理解两个集合的并集和交集的含义,会求两个简单集合的并集和交集;

  5.渗透数形结合、分类讨论等数学思想方法;

  6.在引导学生观察、、抽象、类比得到集合与集合间的关系等数学知识的过程中,培养学生的思维能力。

  第二章函数的概念与基本初等函数

  教学本章时应立足于现实生活从具体问题入手,以问题为背景,按照“问题情境—数学活动—意义建构—数学理论—数学应用—回顾反思”的顺序结构,引导学生通过实验、观察、归纳、抽象、概括,数学地提出、和解决问题。通过本章学习,使学生进一步感受函数是探索自然现象、社会现象基本规律的工具和语言,学会用函数的思想、变化的观点和解决问题,达到培养学生的创新思维的目的。

  1.了解函数概念产生的背景,学习和掌握函数的概念和性质,能借助函数的知识表述、刻画事物的变化规律;

  2.理解有理指数幂的意义,掌握有理指数幂的运算性质;掌握指数函数的概念、图象和性质;理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质;了解幂函数的概念和性质,知道指数函数、对数函数、幂函数时描述客观世界变化规律的重要数学模型;

  3.了解函数与方程之间的`关系;会用二分法求简单方程的近似解;了解函数模型及其意义;

  4.培养学生的理性思维能力、辩证思维能力、问题和解决问题的能力、创新意识与探究能力、数学建模能力以及数学交流的能力。

  必修4,主要涉及三章内容:

  第一章三角函数

  通过本章学习,有助于学生认识三角函数与实际生活的紧密联系,以及三角函数在解决实际问题中的广泛应用,从中感受数学的价值,学会用数学的思维方式观察、现实世界、解决日常生活和其他学科学习中的问题,发展数学应用意识。

  1.了解任意角的概念和弧度制;

  2.掌握任意角三角函数的定义,理解同角三角函数的基本关系及诱导公式;

  3.了解三角函数的周期性;

  4.掌握三角函数的图像与性质。

  第二章平面向量

  在本章中让学生了解平面向量丰富的实际背景,理解平面向量及其运算的意义,能用向量的语言和方法表述和解决数学和物理中的一些问题,发展运算能力和解决实际问题的能力。

  1.理解平面向量的概念及其表示;

  2.掌握平面向量的加法、减法和向量数乘的运算;

  3.理解平面向量的正交分解及其坐标表示,掌握平面向量的坐标运算;

  4.理解平面向量数量积的含义,会用平面向量的数量积解决有关角度和垂直的问题。

  第三章几个三角恒等式

  通过推导两角和与差的余弦、正弦、正切公式,二倍角的正弦、余弦、正切公式以及积化和差、和差化积、半角公式的过程,让学生在经历和参与数学发现活动的基础上,体会向量与三角函数的联系、向量与三角恒等变换公式的联系,理解并掌握三角变换的基本方法。

  1.掌握两角和与差的余弦、正弦、正切公式;

  2.掌握二倍角的正弦、余弦、正切公式;

  3.能正确运用三角公式进行简单的三角函数式的化简、求值和恒等式证明。

高一数学教学计划8

  本学期我担任高一(3)、(4)两班的数学教学工作,两班学生共有138人。大部分学生初中的基础较差,整体水平不高。从上课两周来看,学生的学习进取性还比较高,爱问问题的学生比较多;但由于基础知识不太牢固,没有良好的学习习惯,自控本事较差,不能正确地定位自我;所以上课效率一般,教学工作有必须的难度,为把本学期教学工作做好,制定如下教学工作计划。

  一、教学质量目标

  (1)获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,体会数学思想和方法。

  (2)培养学生的逻辑思维本事、运算本事、空间想象本事,以及综合运用有关数学知识分析问题和解决问题的本事。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的本事;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的本事。

  (3)根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。

  (4)使学生具有必须的数学视野,逐步认识数学的科学价值、应用价值和文化价值,构成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。

  (5)学会经过收集信息、处理数据、制作图像、分析原因、推出结论来解决实际问题的思维方法和操作方法。

  (6)本学期是高一的重要时期,教师承担着双重职责,既要不断夯实基础,加强综合本事的培养,又要渗透有关高考的思想方法,为三年的学习做好准备。

  二、教学目标、

  (一)情感目标

  (1)经过分析问题的方法的教学,培养学生的学习的兴趣。

  (2)供给生活背景,经过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。

  (3)在探究基本函数的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识。

  (4)基于情意目标,调控教学流程,坚定学习信念和学习信心。

  (5)还时间和空间给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维本事的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。

  (6)让学生体验发现挫折矛盾顿悟新的发现这一科学发现历程法。

  (二)本事要求

  1、培养学生记忆本事。

  (1)经过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。

  (2)经过揭示立体集合、函数、数列有关概念、公式和图形的对应关系,培养记忆本事。

  2、培养学生的运算本事。

  (1)经过概率的训练,培养学生的运算本事。

  (2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算本事。

  (3)经过函数、数列的教学,提高学生是运算过程具有明晰性、合理性、简捷性本事。

  (4)经过一题多解、一题多变培养正确、迅速与合理、灵活的`运算本事,促使知识间的滲透和迁移。

  (5)利用数形结合,另辟蹊径,提高学生运算本事。

  三、学情分析

  高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着。他的特殊性就在于它的跨越性,梦想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长,应对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望。我们要从学生的认识水平和实际本事出发,研究学生的心理特征,做好初三与高一的衔接工作,帮忙学生解决好从初中到高中学习方法的过渡。从高一齐就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。

  四、促进目标达成的重点工作及措施

  重点工作:

  认真贯彻高中数学新课标精神,树立新的教学理念,以双基教学为主要资料,坚持抓两头、带中间、整体推进,使每个学生的数学本事都得到提高和发展。

  分层推进措施

  1、重视学生非智力因素培养,要经常性地鼓励学生,增强学生学习数学兴趣,树立勇于克服困难与战胜困难的信心。

  2、合理引入课题,由数学活动、故事、提问、师生交流等方式激发学生学习兴趣,注意从实例出发,从感性提高到理性;注意运用比较的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

  3、培养学生解答考题的本事,经过例题,从形式和资料两方应对所学知识进行本事方面的分析,引导学生了解数学需要哪些本事要求。

  4、让学生经过单元考试,检测自我的实际应用本事,从而及时总结经验,找出不足,做好充分的准备

  5、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的本事。

  6、加强培养学生的逻辑思维本事和解决实际问题的本事,以及培养提高学生的自学本事,养成善于分析问题的习惯,进行辨证唯物主义教育;同时重视数学应用意识及应用本事的培养。

  7、自始至终贯彻教学四环节(引入、探究、例析、反馈),针对不一样的教材资料选择不一样教法,提倡创新教学方法,把学生被动理解知识转化主动学习知识。

  8、注意研究学生,做好初、高中学习方法的衔接工作。集中精力打好基础,分项突破难点、所列基础知识依据课程标准设计,着眼于基础知识与重点资料,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,上难题。同时应放眼高中教学全局,注意高考命题中的知识要求,本事要求及新趋势,这样才能统筹安排,循序渐进,使高一的数学教学与高中教学的全局有机结合。

高一数学教学计划9

  一、教材

  函数的单调性是函数的重要性质.从知识的网络结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用.函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用.

  根据函数单调性在整个教材内容中的地位与作用,本节课教学应实现如下教学目标:

  知识与技能使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;

  过程与方法引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、问题、解决问题的能力。

  情感态度与价值观在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

  根据上述教学目标,本节课的教学重点是函数单调性的概念形成和初步运用.虽然高一学生已经有一定的抽象思维能力,但函数单调性概念对他们来说还是比较抽象的。因此,本节课的学习难点是函数单调性的概念形成。

  二、教法学法

  为了实现本节课的教学目标,在教法上我采取了

  1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性。

  2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念。

  3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达。

  在学法上我重视了:

  1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃。

  2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和解决问题的能力。

  三、教学过程

  函数单调性的概念产生和形成是本节课的难点,为了突破这一难点,在教学设计上采用了下列四个环节。

  (一)创设情境,提出问题

  (问题情境)(播放电视台天气预报的音乐)。如图为某地区20xx年元旦这一天24小时内的气温变化图,观察这张气温变化图:

  [教师活动]引导学生观察图象,提出问题:

  问题1:说出气温在哪些时段内是逐步升高的或下降的?

  问题2:怎样用数学语言刻画上述时段内“随着时间的增大气温逐渐升高”这一特征?

  [设计意图]问题是数学的心脏,问题是学生思维的开始,问题是学生兴趣的开始。这里,通过两个问题,引发学生的进一步学习的好奇心。

  (二)探究发现建构概念

  [学生活动]对于问题1,学生容易给出答案。问题2对学生来说较为抽象,不易回答。

  [教师活动]为了引导学生解决问题2,先让学生观察图象,通过具体情形,例如,“t1=8时,f(t1)=1,t2=10时,f(t2)=4”这一情形进行描述.引导学生回答:对于自变量8<10,对应的函数值有1<4。举几个例子表述一下。然后给出一个铺垫性的问题:结合图象,请你用自己的语言,描述“在区间[4,14]上,气温随时间增大而升高”这一特征。

  在学生对于单调增函数的特征有一定直观认识时,进一步提出:

  问题3:对于任意的t1、t2∈[4,16]时,当t1

  (t1)

  [学生活动]通过观察图象、进行实验(计算机)、正反对比,发现数量关系,由具体到抽象,由模糊到清晰逐步归纳、概括、抽象出单调增函数概念的本质属性,并尝试用符号语言进行初步的表述。

  [教师活动]为了获得单调增函数概念,对于不同学生的表述进行、归类,引导学生得出关键词“区间内”、“任意”、“当时,都有”。告诉他们“把满足这些条件的函数称之为单调增函数”,之后由他们集体给出单调增函数概念的数学表述.提出:

  问题4:类比单调增函数概念,你能给出单调减函数的概念吗?

  最后完成单调性和单调区间概念的整体表述。

  [设计意图]数学概念的形成来自解决实际问题和数学自身发展的需要。但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的经验和已有的知识基础出发,经历“数学化”、“再创造”的活动过程。刚升入高一的学生已经具备了一定的几何形象思维能力,但抽象思维能力不强。从日常的描述性语言概念升华到用数学符号语言精确刻画概念是本节课的难点。

  (三)自我尝试运用概念

  1.为了理解函数单调性的概念,及时地进行运用是十分必要的。

  [教师活动]问题5:(1)你能找出气温图中的单调区间吗?(2)你能说出你学过的函数的单调区间吗?请举例说明。

  [学生活动]对于(1),学生容易看出:气温图中分别有两个单调减区间和一个单调增区间.对于(2),学生容易举出具体函数如:f(x)=—2x+2,f(x)=x2+2x—3,f(x)=1/x,并画出函数的草图,根据函数的图象说出函数的单调区间。

  [教师活动]利用实物投影仪,投影出学生画出的草图和标出的单调区间,并指出学生回答问题时可能出现的错误,如:在叙述函数的单调区间时写成并集。

  [设计意图]在学生已有认知结构的基础上提出新问题,使学生明了,过去所研究的函数的相关特征,就是现在所学的函数的单调性,从而加深对函数单调性概念的理解。

  2.对于给定图象的函数,借助于图象,我们可以直观地判定函数的'单调性,也能找到单调区间.而对于一般的函数,我们怎样去判定函数的单调性呢?

  [教师活动]问题6:证明在区间(0,+∞)上是单调减函数。

  [学生活动]学生相互讨论,尝试自主进行函数单调性的证明,可能会出现不知如何比较f(x1)与f(x2)的大小、不会正确表述、变形不到位或根本不会变形等困难。

  [教师活动]教师深入学生中,与学生交流,了解学生思考问题的进展过程,投影学生的证明过程,纠正出现的错误,规范书写的格式。

  [学生活动]学生自我归纳证明函数单调性的一般方法和操作流程:取值作差变形定号判断。

  [设计意图]有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此.利用学生自己提出的问题,让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究。

  (四)回顾反思深化概念

  [教师活动]给出一组题:

  1、定义在R上的单调函数f(x)满足f(2)>f(1),那么函数f(x)是R上的单调增函数还是单调减函数?

  2、若定义在R上的单调减函数f(x)满足f(1+a)

  [学生活动]学生互相讨论,探求问题的解答和问题的解决过程,并通过问题,归纳总结本节课的内容和方法。

  [设计意图]通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对函数单调性认识的再次深化。

  [教师活动]作业布置:

  (1)阅读课本P34-35例2

  (2)书面作业:

  必做:教材P431、7、11

  选做:二次函数y=x2+bx+c在[0,+∞)是增函数,满足条件的实数的值唯一吗?

  探究:函数y=x在定义域内是增函数,函数有两个单调减区间,由这两个基本函数构成的函数的单调性如何?请证明你得到的结论。

  [设计意图]通过两方面的作业,使学生养成先看书,后做作业的习惯。基于函数单调性内容的特点及学生实际,对课后书面作业实施分层设置,安排基本练习题、巩固理解题和深化探究题三层。学生完成作业的形式为必做、选做和探究三种,使学生在完成必修教材基本学习任务的同时,拓展自主发展的空间,让每一个学生都得到符合自身实践的感悟,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成。

  四、教学评价

  学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价。教师应当高度重视学生学习过程中的参与度、自信心、团队精神、合作意识、思考习惯的养成、数学发现的能力,以及学习的兴趣和成就感。学生熟悉的问题情境可以激发学生的学习兴趣,问题串的设计可以让更多的学生主动参与,师生对话可以实现师生合作,适度的研讨可以促进生生交流,以及团队精神,知识的生成和问题的解决可以让学生感受到成功的喜悦,缜密的思考可以培养学生思考的习惯。让学生在教师评价、学生评价以及自我评价的过程中体验知识的积累、探索能力的长进和思维品质的提高,为学生的可持续发展打下基础。

高一数学教学计划10

  §1.1集合

  教材:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。

  课型:新授课

  教学目标:

  (1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;

  (2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;

  教学重点:集合的基本概念与表示方法;

  教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的.集合;

  教学过程:

  一、引入课题

  军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?

  在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

  阅读课本P2-P3内容

  二、新课教学

  (一)集合的有关概念

  1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。

  2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。

  3.思考1:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。

  4.关于集合的元素的特征

  (1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。

  (2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

  (3)集合相等:构成两个集合的元素完全一样

  5.元素与集合的关系;

  (1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A

  (2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作a A(或a A)(举例)

  6.常用数集及其记法

  非负整数集(或自然数集),记作N

  正整数集,记作N或N+;

  整数集,记作Z

  有理数集,记作Q

  实数集,记作R

  (二)集合的表示方法

  我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

  (1)列举法:把集合中的元素一一列举出来,写在大括号内。

  如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;

  例1.(课本例1)

  思考2,引入描述法

  说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。

  (2)描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。

  具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

  如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},…;

  例2.(课本例2)

  说明:(课本P5最后一段)

  思考3:(课本P6思考)

  强调:描述法表示集合应注意集合的代表元素

  {(x,y)|y= x2+3x+2}与{y|y= x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。

  辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。

  说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

  (三)课堂练习(课本P6练习)

  三、归纳小结

  本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。

  四、作业布置

  书面作业:习题1.1,第1- 4题

  五、板书设计(略)文章

高一数学教学计划11

  为圆满完成新高一的教学任务,使学生全面系统的掌握必修一到四的学习内 容,提高学生的数学素养,我们高一数学组秉承“高一决定高考,细节决定成败”的思想,从初、高中衔接起认真分析学情,积极研讨,制定本学期教学计划如下:

  一、学生基本状况:

  (1)本年级共12个行政班,学生860人。在中考数学成绩满分120分的基础上,我级100分以上的人很少,相对来说90分以上属于高分,绝大多数90分以下;学生数学底子薄弱,学习环节不完整,学习习惯不科学;另外,班级差异大,层次多。我们要加强集体备课力度,夯实基础,培养学生良好的学习习惯。

  (2)由于初高中分别实施课改教学,高中教学内容与初中所学衔接度远远不够,存在较大断层,我们需制定并学习衔接材料,并且在新授的同时适时补充一些内容,势必挤占新课的授课时间,时间紧任务重。我们要珍惜每一堂课,优化每一环节,提高学习效率,探索高效课堂。

  (3)高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,学生有的是一份执着,期望值也较大。理想的期盼与学法的突变,难度的.加强与惰性的生成等等矛盾冲突伴随着高一新生的成长,我们必须转变教学理念,并落实在课堂教学的各个环节,才能不负众望。

  (4)刚刚进入高一的学生还停留在初中时的学习习惯和学习方法以及对数学学习的散漫认识上,我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡。从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。

  二、教学内容任务:

  本学期完成数学人教A版《必修1》和《必修2》两册内容。

  三、教学措施要求:

  (1)注意研究学生,做好初、高中学习方法的衔接工作;加强自我学习,特别是两个纲领性文件——《国家普通高中数学课程标准教学要求》和《20xx年山东省高考数学科考试说明》的学习,吃透大纲,准确把握教学要求,提高教学效率,不做无用功。

  (2)加强集体备课,发动全组同志,确定阶段主讲人,集思广益,讨论优化教学方案;各班级统一进度,分层要求,分层作业,分层考试;注意运用现代化教学手段辅助数学教学;注意运用多媒体、投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。

  (3)着眼于基础知识与重点内容,集中精力打好基础,分项突破难点。充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,上难题。同时放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样统筹安排,循序渐进,使高一的数学教学与高中教学的全局有机结合。

  (4)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解、训练数学能力和培养数学素养。

  (5)让学生通过单元考试,检测自己的实际应用能力,从而及时总结总结总结总结经验,找出不足,做好充分的准备。

  (6)精心组织教学,保护学生学习数学的积极性,重视数学学习能力培养;抓好尖子生与后进生的辅导工作,提前展开数学分层培养和数学基础辅导。

高一数学教学计划12

  本学期担任高一12、13两班的数学教学工作,两班学生共有100人,初中的基础参差不齐,但两个班的学生整体水平还可以;部分学生学习习惯不好,很多学生不能正确评价自己,这给教学工作带来了一定的难度,为把本学期教学工作做好,制定如下教学工作计划。

  一、教学目标.

  (一)情意目标

  (1)通过问题的方法的教学,培养学生的学习的兴趣。

  (2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。

  (3)在探究函数的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识

  (4)基于情意目标,调控教学流程,坚定学习信念和学习信心。

  (5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。

  (6)让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程法。

  (二)能力要求

  1、培养学生记忆能力。

  (1)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。

  (3)通过揭示立体集合、函数、三角函数、平面向量有关概念、公式和图形的对应关系,培养记忆能力。

  2、培养学生的运算能力。

  (1)通过三角函数的训练,培养学生的运算能力。

  (2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。

  (3)通过函数教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。

  (4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。

  (5)利用数形结合,另辟蹊径,提高学生运算能力。

  3、培养学生的思维能力。

  (1)通过对简易逻辑的教学,培养学生思维的周密性及思维的逻辑性。

  (2)通过不等式、函数的一题多解、多题一解,培养思维的灵活性和敏捷性,发展发散思维能力。

  (3)通过不等式、函数的引伸、推广,培养学生的创造性思维。

  (4)加强知识的横向联系,培养学生的数形结合的能力。

  (5)通过典型例题不同思路的,培养思维的灵活性,是学生掌握转化思想方法。

  (三)知识目标

  1.集合、简易逻辑

  (1)理解集合、子集、补订、交集、交集的概念.了解空集和全集的意义.了解属于、包含、相等关系的意义.掌握有关的术语和符号,并会用它们正确表示一些简单的集合.

  (2)掌握一元二次不等式、绝对值不等式的解法。

  2.函数

  (1)了解映射的概念,理解函数的概念.

  (2)了解函数的单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法.

  (3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数.

  (4)理解分数指数幂的概念,掌握有理指数幂的运算性质.掌握指数函数的概念、图像和性质.

  (5)理解对数的概念,掌握对数的`运算性质.掌握对数函数的概念、图像和性质.

  (6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.

  3.三角函数

  4.平面向量

  三、教学重点

  1、集合、子集、补集、交集、并集.一元二次不等式的解法

  2.映射、函数、函数的单调性、反函数、指数函数、对数函数、函数的应用.

  3.三角函数的图像和性质

  4、平面向量的基础知识和基本的运算。

  四、教学难点

  1.函数、指数函数、对数函数

  2.三角函数的概念、图像和性质

  五、工作措施.

  1、抓好课堂教学,提高教学效益。

  课堂教学是教学的主要环节,因此,抓好课堂教学是教学之根本,是大面积提高数学成绩的主途径。

  (1)、扎实落实集体备课,通过集体讨论,抓住教学内容的实质,形成较好的教学方案,拟好典型例题、练习题、周练题、章考题、月考题。

  (2)、加大课堂教改力度,培养学生的自主学习能力。最有效的学习是自主学习,因此,课堂教学要大力培养学生自主探究的精神,通过“知识的产生,发展”,逐步形成知识体系;通过“知识质疑、展活”迁移知识、应用知识,提高能力。同时要养成学生良好的学习习惯,不断提高学生的数学素养,从而提高数学素养,并大面积提高数学成绩。

高一数学教学计划13

  本学期担任高一5、6两班的数学教学工作,两班学生共有110人,初中的基础参差不齐,但两个班的学生整体水平还能够;部分学生学习习惯不好,很多学生不能正确评价自我,这给教学工作带来了必须的难度,为把本学期教学工作做好,制定如下教学工作计划。

  一、教学目标、

  (一)情意目标

  (1)经过分析问题的方法的教学,培养学生的学习的兴趣。

  (2)供给生活背景,经过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。

  (3)在探究函数、等差数列、等比数列的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识

  (4)基于情意目标,调控教学流程,坚定学习信念和学习信心。

  (5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维本事的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。

  (6)让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程法。

  (二)本事要求

  1、培养学生记忆本事。

  (1)经过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。

  (3)经过揭示立体集合、函数、数列有关概念、公式和图形的对应关系,培养记忆本事。

  2、培养学生的运算本事。

  (1)经过概率的训练,培养学生的运算本事。

  (2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算本事。

  (3)经过函数、数列的教学,提高学生是运算过程具有明晰性、合理性、简捷性本事。

  (4)经过一题多解、一题多变培养正确、迅速与合理、灵活的运算本事,促使知识间的滲透和迁移。

  (5)利用数形结合,另辟蹊径,提高学生运算本事。

  3、培养学生的'思维本事。

  (1)经过对简易逻辑的教学,培养学生思维的周密性及思维的逻辑性。

  (2)经过不等式、函数的一题多解、多题一解,培养思维的灵活性和敏捷性,发展发散思维本事。

  (3)经过不等式、函数的引伸、推广,培养学生的创造性思维。

  (4)加强知识的横向联系,培养学生的数形结合的本事。

  (5)经过典型例题不一样思路的分析,培养思维的灵活性,是学生掌握转化思想方法。

  (三)知识目标

  1、集合、简易逻辑

  (1)理解集合、子集、补订、交集、交集的概念、了解空集和全集的意义、了解属于、包含、相等关系的意义、掌握有关的术语和符号,并会用它们正确表示一些简单的集合。

  (2)理解逻辑联结词"或"、"且"、"非"的含义、理解四种命题及其相互关系、掌握充分条件、必要条件及充要条件的意义。

  (3)掌握一元二次不等式、绝对值不等式的解法。

  2、函数

  (1)了解映射的概念,理解函数的概念。

  (2)了解函数的单调性、奇偶性的概念,掌握确定一些简单函数的单调性、奇偶性的方法。

  (3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数。

  (4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像和性质。

  (5)理解对数的概念,掌握对数的运算性质、掌握对数函数的概念、图像和性质。

  (6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题。

  3、数列

  (1)理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。

  (2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题。

  (3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题。

  二、教学重点

  1、集合、子集、补集、交集、并集、一元二次不等式的解法

  四种命题、充分条件和必要条件、

  2、映射、函数、函数的单调性、反函数、指数函数、对数函数、函数的应用。

  3、等差数列及其通项公式、等差数列前n项和公式。

  等比数列及其通项公式、等比数列前n项和公式。

  三、教学难点

  1、四种命题、充分条件和必要条件

  2、反函数、指数函数、对数函数

  3、等差、等比数列的性质

  四、工作措施

  抓好课堂教学,提高教学效益。课堂教学是教学的主要环节,所以,抓好课堂教学是教学之根本,是大面积提高数学成绩的主途径。

  (1)、扎实落实团体备课,经过团体讨论,抓住教学资料的实质,构成较好的教学方案,拟好典型例题、练习题、周练题、章考题、月考题。

  (2)、加大课堂教改力度,培养学生的自主学习本事。最有效的学习是自主学习,所以,课堂教学要大力培养学生自主探究的精神,经过“知识的产生,发展”,逐步构成知识体系;经过“知识质疑、展活”迁移知识、应用知识,提高本事。同时要养成学生良好的学习习惯,不断提高学生的数学素养,从而提高数学素养,并大面积提高数学成绩。

高一数学教学计划14

  指导思想:

  (1)随着素质教育的深入展开,《课程方案》提出了教育要面向世界,面向未来,面向现代化和教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德、智、体等方面全面发展的社会主义事业的建设者和接班人的指导思想和课程理念和改革要点。使学生掌握从事社会主义现代化建设和进一步学习现代化科学技术所需要的数学知识和基本技能。其内容包括代数、几何、三角的基本概念、规律和它们反映出来的思想方法,概率、统计的初步知识,计算机的使用等。

  (2)培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力。

  (3) 根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。

  (4) 使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。

  (5)学会通过收集信息、处理数据、制作图像、分析原因、推出结论来解决实际问题的思维方法和操作方法。

  (6)本学期是高一的重要时期,教师承担着双重责任,既要不断夯实基础,加强综合能力的培养,又要渗透有关高考的思想方法,为三年的学习做好准备。

  学情分析及相关措施:

  高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着。他的特殊性就在于它的跨越性,理想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长,面对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望。我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡。从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。具体措施如下:

  (1)注意研究学生,做好初、高中学习方法的衔接工作。

  (2)集中精力打好基础,分项突破难点.所列基础知识依据课程标准设计,着眼于基础知识与重点内容,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,上难题。同时应放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样才能统筹安排,循序渐进,使高一的数学教学与高中教学的全局有机结合。.

  (3)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解数学需要哪些能力要求。

  (4)让学生通过单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备

  (5)抓好尖子生与后进生的辅导工作,提前展开数学奥竞选拔和数学基础辅导。

  (6)注意运用现代化教学手段辅助数学教学;注意运用投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。

  教学进度安排:

  周 次 时 内 容 重 点、难 点

  第1周

  9.2~9.6 5 集合的含义与表示、

  集合间的基本关系、

  会求两个简单集合的并集与交集;会求给定子集的补集;。难点:理解概念

  第2周

  9.7~9.13 5 集合的基本运算

  函数的概念、

  函数的表示法 能使用Venn图表达集合的关系及运算,会求一些简单函数的定义域和值域;能简单应用

  第3周

  9.14~9.20 5 单调性与最值、

  奇偶性、实习、小结 学会运用函数图象理解和研究函数的'性质,理解函数单调性、最大(小)值及几何意义

  第4周

  9.21~9.27 5 指数与指数幂的运算、

  指数函数及其性质 掌握幂的运算;探索并理解指数函数的单调性与特殊点。难点:理解概念

  第5周

  9.28~10.4 5 (9月月考?、国庆放假)

  第6周

  10.5~10.11 5 对数与对数运算、

  对数函数及其性质 理解对数的概念及其运算性质,知道用换底公式;探索并了解对数函数单调性与特殊点;知道指数函数与对数函数互为反函数

  第7周

  10.12~10.18 5 幂函数 从五个具体的幂函数(y=x,y=x2, y=x3, y=x-1, y=x1/2)图象中认识幂函数的一些性质

  第8周

  10.19~10.25 5 方程的根与函数零点,

  二分法求方程近似解, 能够借助计算器用二分法求相应方程的近似解;

  第9周

  10.26~11.1 5 几类不同增长的模型、函数模型应用举例 对比指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义

  第10周

  11.2~11.8 期中复习及考试 分章归纳复习+1套模拟测试

  第11周

  11.9~11.15 5 任意角和弧度制

  任意角的三角函数 了解任意角的概念和弧度制,能进行弧度和度的互化;借助单位圆理解任意角三角函数的定义

  第12周

  11.16~11.22 5 三角函数的诱导公式

  三角函数的图像和性质 借助三角函数线推导出诱导公式,能画出y=sinx,y=cosx,y=tanx的图像,了解三角函数的周期性

  第13周

  11.23~11.29 5 函数y=Asin(wx+q)的图像 借助图像理解正弦函数余弦函数正切函数的性质,借助计算机画出图像观察A w q对函数图像变化的影响

  第14周

  11.30~12.6 5 三角函数模型的简单应用 单元考试 会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化的重要函数模型

  第15周

  12.7~12.13 5 平面向量的实际背景及基本概念,平面向量的线性运算 掌握向量加、减法的运算,理解其几何意义掌握数乘运算及两个向量共线的含义了解平面向量的基本定理掌握正交分解及坐标表示、会用坐标表示平面向量的加减及数乘运算

  第16周

  12.14~12.20 5 平面向量的基本定理及坐标表示,平面向量的数量积, 理解用坐标表示的平面向量共线的条件,理解平面向量数量积德含义及其物理意义,体会平面向量数量积与向量投影的关系,掌握数量积的坐标表达式,会进行平面,向量数量积的运算、求夹角、及垂直关系

  第17周

  12.21~12.27 5 平面向量应用举例,

  小结 用向量方法解决莫些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种几何问题,物理问题的工具,发展运算能力和解决实际问题的能力

  第18周

  12.28~1.3 5 两角和与差点正弦、余弦和正切公式 能以两角差点余弦公式导出两角和与差点正弦、余弦和正切公式,二倍角的正弦、余弦和正切公式,了解它们的内在联系

  第19周

  1.4~1.10 5 简单的三角恒等变换

  期末复习

高一数学教学计划15

  一、教材(结构系统、单元内容、重难点)

  必修5第一章:解三角形;重点是正弦定理与余弦定理;难点是正弦定理与余弦定理的应用;第二章:数列;重点是等差数列与等比数列的前n项的和;难点是等差数列与等比数列前n项的和与应用;第三章:不等式;重点是一元二次不等式及其解法、二元一次不等式(组)与简单的线性规划问题、基本不等式;难点是二元一次不等式(组)与简单的线性规划问题及应用;

  必修2第一章:空间几何体;重点是空间几何体的三视图和直观图及表面积与体积;难点是空间几何体的三视图;第二章:点、直线、平面之间的位置关系;重点与难点都是直线与平面平行及垂直的判定及其性质;第三章:直线与方程;重点是直线的倾斜角与斜率及直线方程;难点是如何选择恰当的直线方程求解题目;第四章:圆与方程;重点是圆的方程及直线与圆的位置关系;难点是直线与圆的位置关系;

  二、学生(双基智能水平、学习态度、方法、纪律)

  较去年而言,今年的`学生的素质有了比较大的提高,学生的基础知识水平与基本学习方法比较扎实,大部分的学生对学习都有很大的兴趣,学习纪律比较自觉。

  三、教学目的要求

  1.通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题和与测量及几何计算有关的实际问题。

  2.通过日常生活中的实例,了解数列的概念和几种简单的表示方法,了解数列是一种特殊的函数;理解等差数列、等比数列的概念,探索并掌握2种数列的通项公式与前n项和的公式,能用有关的知识解决相应的问题。

  3.理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用一元二次不等式组表示平面区域,并尝试解决简单的二元线性规划问题。

  4.几何学研究现实世界中物体的形状、大小与位置的学科。直观感知、操作确认、思辨论证、度量计算是认识和探索几何图形及其性质的方法。先从对空间几何体的整体观察入手,认识空间图形及其直观图的画法;再以长方体为载体,直观认识和理解空间中点、直线、平面之间的位置关系,并利用数学语言表述有关平行、垂直的性质与判定,对某些结论进行论证。另外了解一些简单几何体的表面积与体积的计算方法。在解析几何初步中,在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互关系,了解空间直角坐标系。体会数形结合的思想,初步形成用代数方法解决几何问题的能力。

  四、完成教学任务和提高教学质量的具体措施

  积极做好集体备课工作,达到内容统一、进度统一、目标统一、例题统一、习题统一、资料统一;上好每一节课,及时对学生的思想进行观察与指导;课后进行有效的辅导;进行有效的课堂反思。

  五、教学进度

  周次

  课、章、节教学内容备注11.1,1.2解三角形21.2解三角形32.1,2.2数列的概念与简单表示法,等差数列42.3等差数列的前n项和52.4,2.5等比数列及前n项和62.5考试73.1,3.2不等关系与不等式,一元二次不等式及其解法83.3,3.4二元一次不等式(组)与简单线性规划问题,基本不等式9考试,复习10期中考试111.1,1.2空间几何体的结构,三视图,直观图121.3空间几何体的表面积与体积132.1,2.2空间点、直线、平面的位置关系,直线、平面平行的判定及其性质142.3直线、平面的判定及其性质153.1,3.2直线的倾斜角与斜率,直线方程163.3直线的交点坐标与距离公式174.1,4.2圆的方程,直线、圆的位置关系184.3空间直角坐标系19复习20考试2122

【高一数学教学计划】相关文章:

高一数学教学计划05-01

高一数学教学计划06-02

高一数学的教学计划04-04

人教高一数学教学计划12-23

高一数学教学计划(15篇)12-24

高一数学上册教学计划03-20

高一数学教学计划15篇11-14

高一数学教学计划(15篇)09-24

精选高一数学教学计划三篇06-23