乐文网>教学资源>教学计划>高二数学教学计划

高二数学教学计划

时间:2024-06-23 11:32:00 教学计划 我要投稿

【精品】高二数学教学计划15篇

  日子如同白驹过隙,迎接我们的将是新的生活,新的挑战,此时此刻需要为接下来的工作做一个详细的计划了。什么样的计划才是有效的呢?下面是小编为大家整理的高二数学教学计划,欢迎阅读与收藏。

【精品】高二数学教学计划15篇

高二数学教学计划1

  一、指导思想:

  在学校教育工作意见指导下,严格执行学校各教育教育制度和要求,加强数学教育研究,提高全组教师教育、教育研究水平,明确任务,团结合作,圆满完成教育教育研究任务。具体任务如下:

  1.让学生获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,理解概念、结论等产生的背景、应用,体验其中包含的数学思想和方法,以及其在后续学习中的作用。通过不同形式的自主学习、探索活动,体验数学发现和创造的历史。

  2.提高学生空间想象力、抽象摘要、推理论证、运算解决、数据处理等基本能力。

  3.提高学生提出、分析和解决数学问题(包括简单的实际问题)的能力,提高数学表现和交流的能力,发展独立获得数学知识的能力。

  4.发展学生数学应用意识和创新意识,努力思考和判断现实世界包含的数学模式。

  5.提高学生学习数学的兴趣,确立学习数学的自信,形成坚持不懈的钻研精神和科学态度。

  6.使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思考习惯,崇尚数学的理性精神,体验数学的美学意义,进一步确立辩证唯物主义和历史唯物主义世界观。

  二、教法分析:

  1.选择与内容密切相关、典型、丰富、学生熟悉的素材,用生动活泼的语言创造数学概念和结论、数学思想和方法、数学应用的学习情况,使学生产生对数学的亲切感,引起学生看到最后的冲动,达到培养兴趣的目的。

  2.通过观察、思考、探索等栏目,引起学生的.思考和探索活动,切实改善学生的学习方式。

  3.在教育中强调类比、普及、特殊化、归化等数学思想方法,尽量养成逻辑思维的习惯。

  三、教育措施:

  1.全体老师诚实团结,相互关心,相互支持,努力使我们的高二数学组成为充满活力的优秀集团。互相上课,取长补短,完善自己,加强形式、时间、场所的交流。在日常工作中,保持和优化个人特色,实现资源共享,同类班级相关工作基本统一。

  2.认真执行,做好集体准备课程。每周四上午三四节集体备课,认真分析教材内容,研讨其中的重点、难点、教学方法等。

  3.详细规划,保证练习质量。在教育中充分利用资料,要求学生根据教育进度完成相应的练习题,每周以内容滚动式制作周练试卷,老师必须整理,存在的普遍问题必须安排时间评价,成绩在星期四之前自己输入年级计算机。

  4.抓住第二课,稳定数学优秀学生,培养数学能力兴趣。各班培养好本班优生,注意激发学员学习兴趣,随时注意学员学习方法辅导。

  5.加强指导工作。对于数学学习困难的学生来说,教师的下班指导非常重要。在教师教育中,要尽快把握班级学生的数学学习状况,有目的地进行指导工作,注意班级优生层,不能忽视班级困难的学生。

高二数学教学计划2

  一、指导思想

  努力把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,立足掌握基本技能和基本能力,着力培养学生的创新精神,运用数学的.意识和能力,奠定他们终身学习的基础。坚持一切为了学生,为了学生一切,人人都能成功的教学理念。

高二数学教学计划3

  以语文新课程标准为指导,以语文教研组工作计划为参考,切实提高教师自身的职业道德修养、业务知识水平和教育教学能力,落实常规工作,夯实基础,增加课外阅读量,丰富学生的知识面,提高学生的语文素养,使学生具有适应实际需要的现代文阅读能力、写作能力和口语交际能力,具有初步的文学鉴赏能力和阅读课外文言文的能力,掌握语文学习的基本方法,养成自学语文的习惯,提高文化品位。

  教材教学:高二阶段是高中阶段比较关键的一年,从教材上来看,难度较高一有了很大的提升,如阅读教学上对学生的要求已由一般的阅读理解上升到品味鉴赏,还新增了诗词、小说等阅读单元。写作上则要求学生较好掌握议论文的写作和应对话题作文的能力。授课要求:

  1、提高备课质量,继续学习新大纲,钻研新教材,探索新教法,体现知识和能力要求,充分发挥教师的个性和优势,提升学生的'语文素养。

  2、加强对学生语文学习习惯的培养,加强常规工作的落实和检查,并有阶段性检查小结和整改措施。

  3、以“阅读”和“写作”教学为抓手,带动其它方面的教学工作。

  4、强化语文知识的积累,包括名言诗句、文学常识、文化常识、成语等。

  5、运用各种方法,提高学生课外阅读的兴趣和能力,拓展学生语文学习空间。

  关于学生的要求:

  1、要求学生准备两本笔记本,一本用于课内阅读,一本用于课外阅读。

  2、课内阅读:采取所用教材篇目(有一定选择)和新教材部分篇目相结合学习的原则。对于重点篇目要精讲,并要进行配套的训练。要重在以教材为载体教会学生语文阅读的方法。

  3、课外阅读:通过多种途径加强,如教师推荐佳作、学生推荐佳作、摘抄作业、图书馆阅读、写读书笔记、阅读检测等。要通过专题阅读提高学生阅读的能力。一学期保证学生有15篇以上的课外现代文训练。学生每周必须要有1000字以上的课外阅读量,每周要完成300字以上文字摘抄,每月必须读一本文学名著,并完成一篇不少于600字的读书笔记。

  坚持开展校本教研活动,充分开发一切可以利用的课程资源,形成自己的教学特色。认真读书,钻研教材,促使自身文化素养和教学水平的提高,实现与新课程的同步发展。同时,要加强教师之间、学校之间、学校与教研部门之间的沟通、交流、协作。希望自己能在本学期取得更大进步。

高二数学教学计划4

  数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的逻辑推理及对完美境界的追求。小编准备了高二第一学期数学文科教学计划,具体请看以下内容。

  一、指导思想:

  1。获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

  2。提高空间想像、抽象概括、推理论证、运算求解。

  3。提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

  4。发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

  5。提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

  二、教学目标:

  (一)情意目标:

  (1)通过分析问题的方法的教学,培养学生的学习兴趣。

  (2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。

  (3)在探究中体验获得数学规律的'艰辛和乐趣,在分组研究合作的学习中学会交流、相互评价,提高学生的合作意识。

  (二)能力要求:

  (1)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。

  (2)通过揭示所学内容中的有关概念、公式和图形的对应关系,培养记忆能力。

  (3)通过教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。

  (4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。

  (5)利用数形结合,另辟蹊径,提高学生运算能力。

  三、教学内容

  本学期教学内容有立体几何、解析几何、逻辑知识和圆锥曲线、二元一次不等式(组)与简单的线性规划。

  立体几何是研究的是物体的形状、大小与位置关系。通过直观感知、操作确认、思辨论证、等方法认识和探索几何图形及其性质。通过学习,培养和发展学生的空间想象能力、推理论证能力、运用图形语言进行交流的能力以及几何直观能力。

  直线和圆是用代数方法研究图形的几何性质,体现了数形结合的重要数学思想。在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互位置关系,并了解空间直角坐标系,体会数形结合的思想,初步形成用代数方法解决几何问题的能力。

  二元一次不等式(组)与简单的线性规划问题是不等式的重要应用,也是数学实际应用的重要形式之一。本节要求学生能识别不等式(组)表示的区域,并能根据区域正确地用不等式(组)来表示,能解决简单的实际问题。

  常用逻辑包括命题及其关系、充要条件、简单的逻辑联结词和全称量词与存在量词

  通过学习使学生理解命题的概念,了解若,则形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系;理解必要条件、充分条件与充要条件的含义;了解逻辑联结词或、且、非的含义;理解全称量词和存在量词的意义、能正确地对含一个量词的命题进行否定。

  圆锥曲线研究的对象是椭圆、双曲线、抛物线,使用的方法也是代数方法。这一部分的题目的综合性比较强,它要求学生既能分析图形,又能灵活地进行各种代数式的变形,这对学生能力的要求较高。坐标方法是要求学生掌握的。但是,对学生的要求不能过高,只能以绝大多数学生所能达到的程度为标准。

高二数学教学计划5

  一、指导思想

  主动而不是被动的进行高中新课程标准改革,认真解读新课程标准的理念;研究高中新课程标准的实验与高考衔接的问题;把学生的接受性、被动学习转变成主动性、研究性学习;使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。

  1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

  2.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

  3.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考

  和作出判断。

  4.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

  5.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

  二.工作目标

  备课组长在教研组长的领导下,负责年级备课和教学研究工作,努力提高本年级学科的教学质量。

  1.全组成员精诚团结,互相关心,互相支持,弘扬一种同志加兄弟的同仁关系,力争使我们高一数学组成为一个充满活力的优秀集体。

  2.不拘形式不拘时间地点的加强交流,互相之间取长补短,与时俱进,教学相长。

  3.在日常工作当中,既保持和优化个人特色,又实现资源共享,同类班级的相关工作做到基本统一。

  4.抓好本年级活动课和研究性学习课的教学,有针对性培养学有余力,学有特长的学生,并做好后进生的转化工作,真正做到大面积提高教育质量。

  三.主要措施

  1.以老师的精心备课与充满激情的教学,换取学生学习高效率。

  2.将学校和教研组安排的有关工作落到实处。

  3.落实培辅工作,为高三铺路!教育要从娃娃抓起,那么对难于上青天的教学我们应当从今天抓起。

  四.活动设想

  1.按时完成学校(教导处,教研组)相关工作。

  2.共同研究,共同探讨,备课组为新教材每章节配套单元测试卷两套。

  3.每周集体备课一次,每次有中心发言人,组织进行教学研讨以便分章节搞好集体备课。

  4.互相听课,以人之长,补己之短,完善自我。

  5.认真组织好培优辅差工作。

  6.做好学科段考、模块的复习、出题、考试、评卷、成绩统计和质量分析评价工作.

  7.积极组织全组成员探索教材特点、积极思考教法分析、认真分析学情以便根据不同的情况实施有效的教学策略.

  五.教学内容与要求

  1.导数及其应用(约24课时)

  (1)导数概念及其几何意义

  ①通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵(参见选修1-1案例中的例2、例3)。

  ②通过函数图像直观地理解导数的几何意义。

  (2)导数的运算

  ①能根据导数定义求函数y=c,y=x,y=x2,y=x3,y=1/x,y=x的导数。

  ②能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(ax b))的导数。

  ③会使用导数公式表。

  (3)导数在研究函数中的应用

  ①结合实例,借助几何直观探索并了解函数的.单调性与导数的关系(参见选修

  案例中的例4);能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间。

  ②结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。

  (4)生活中的优化问题举例。

  例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。(参见选修1-1案例中的例5)

  (5)定积分与微积分基本定理

  ①通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念。

  ②通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。(参见例1)

  (6)数学文化

  收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。具体要求见本《标准》中"数学文化"的要求。(参见第91页)

  2.推理与证明(约8课时)

  (1)合情推理与演绎推理

  ①结合已学过的数学实例和生活中的实例,了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中

  的作用(参见选修2-2中的例2、例3)。

  ②结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。

  ③通过具体实例,了解合情推理和演绎推理之间的联系和差异。

  (2)直接证明与间接证明

  ①结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。

  ②结合已经学过的数学实例,了解间接证明的一种基本方法--反证法;了解反证法的思考过程、特点。

  (3)数学归纳法

  了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。

  (4)数学文化

  ①通过对实例的介绍(如欧几里德《几何原本》、马克思《资本论》、杰弗逊《独立宣言》、牛顿三定律),体会公理化思想。

  ②介绍计算机在自动推理领域和数学证明中的作用。

高二数学教学计划6

  一、教学内容

  高中数学的全部内容:掌握基本知识和技能,掌握数学的一般方法,即我们在教材和课程目标中要求掌握的数学对象的基本性质,以及处理数学问题的基本的、常用的数学思维方法,如归纳法、演绎法、分析法、综合法、分类讨论法、数形结合法等。提高学生的思维品质,适应一切变化,使数学学科的复习更加高效、优质。

  学习《考试说明》,全面掌握教材知识,按照考试说明要求进行全面复习。抓教材是关键,打牢基础是我们的重要工作,提高学生解决问题的能力是我们的目标。

  学习《课程标准》和《教材》,不仅要注意《课程标准》中调整的内容和变化的要求,还要注意今年《考试说明》不同版本的对比。结合去年新课改区高考数学评价报告,对《课程标准》进行横向和纵向分析,探究命题的变化规律。

  二、学术状况分析

  我今年分两个班教数学:(20)班和(23)班。和同组其他老师商量后,打算20年2月初开始第一轮;第二轮从2月底到5月初结束;第三轮将于5月初至5月底结束。

  三、具体措施

  (1)加强备考组教师之间的研究

  1、学习《课程标准》,参考邻省20年的《考试说明》,明确复习教学的要求。

  2、学习高中数学教材。处理好几个关系:课程标准、教学大纲、教材的关系;教材与补充教材的关系;重视基础知识与训练能力的关系。

  3、研究新课程区高考试题,把握考试走向。尤其是山东、广东、江苏、海南、宁夏。

  4、研究高考信息,关注考试动态。紧跟20个高考趋势,及时调整复习计划。

  5、研究我校的数学教学情况,尤其是高二学生的学习情况。有针对性地制定切实可行的校本复习教案。

  (二)重视教材,夯实基础,建立良好的知识结构和认知结构体系

  教材是考试内容的载体,是高考命题的依据,是学生智力的生长点,是最有价值的信息。

  (三)增强适度创新能力

  考试能力是高考的关键和永恒的主题。教育部已经明确指出,高考已经从知识的命题变成了能力的命题。

  (四)加强数学思维和方法

  数学不仅是一种重要的工具,也是一种思维方式和一种思想。注重数学思维方法的考查也是高考数学命题的`显著特点之一。数学思维方法是数学知识的概括和提炼,包含在数学知识的发生、发展和应用过程中,可以在相关科学和社会生活中转移和广泛应用。在复习备考中,要把数学思维方法渗透到每一章、每一节、每一节课、每一套试题中。任何精心编制的数学试题,都包含着极其丰富的数学思维方法。如果注意渗透,及时讲解,反复强调,学生就会深入内心,形成良好的思维品质。只有当我们参加考试时,我们才会这样想

  想方法贯穿于整个高中数学的始终,因此在进入高二复习时就需不断利用这些思想方法去处理实际问题,而并非只在高二复习将结束时去讲一两个专题了事。

  (五)强化思维过程,提高解题质量

  数学基础知识的学习要充分重视知识的形成过程,解数学题要着重研究解题的思维过程,弄清基本数学知识和基本数学思想在解题中的意义和作用,注意多题一解、一题多解和一题多变。多题一解有利于培养学生的求同思维;一题多解有利于培养学生的求异思维;一题多变有利于培养学生思维的灵活性与深刻性。在分析解决问题的过程中既构建知识的横向联系,又养成学生多角度思考问题的习惯。

  (六)认真总结每一次测试的得失,提高试卷的讲评效果

  试卷讲评要有科学性、针对性、辐射性。讲评不是简单的公布正确答案,一是帮学生分析探求解题思路,二是分析错误原因,吸取教训,三是适当变通、联想、拓展、延伸,以例及类,探求规律。还可横向比较,与其他班级比较,寻找个人教学的薄弱环节。根据所教学生实际有针对性地组题进行强化训练,抓基础题,得到基础分对大部分学校而言就是高考成功,这已是不争的共识。

  四、教学要求

  第二轮专题过关,对于高考数学的复习,应在一轮系统学习的基础上,利用专题复习,更能提高数学备考的针对性和有效性。在这一阶段,锻炼学生的综合能力与应试技巧,不要重视知识结构的先后次序,需配合着专题的学习,提高学生采用配方法、待定系数法、数形结合,分类讨论,换元等方法解决数学问题的能力,同时针对选择、填空的特色,学习一些解题的特殊技巧、方法,以提高在高考考试中的对时间的掌控力。第三轮综合模拟,在前两轮复习的基础上,为了增强数学备考的针对性和应试功能,做一定量的高考模拟试题是必须的,也是十分有效的。该阶段需要解决的问题是:

  1、强化知识的综合性和交汇性,巩固方法的选择性和灵活性。

  2、检查复习的知识疏漏点和解题易错点,探索解题的规律。

  3、检验知识网络的形成过程。

  4、领会数学思想方法在解答一些高考真题和新颖的模拟试题时的工具性。

  五、在有序做好复习工作的同时注意一下几点:

  (1)从班级实际出发,我要帮助学生切实做到对基础训练完成,加强运算能力的训练,严格答题的规范化,如小括号、中括号等,特别是对那些书写像雾像雨又像风的学生要加强指导,确保基本得分。

  (2)在考试的方法和策略上做好指导工作,如心理问题的疏导,考试时间的合理安排等等。

  (3)与备课组其他老师保持统一,对内协作,对外竞争。自己多做研究工作,如仔细研读订阅的杂志,研究典型试题,把握高考走势。

  (4)做到有练必改,有改必评,有评必纠。

  (5)课内面向大多数同学,课外抓好优等生和边缘生,尤其是边缘生。班级是一个集体,我们的目标是水涨船高,而不是水落石出。

  (6)教研组团队合作

  虚心学习别人的优点,博采众长,对工作是很有利的。校长一直强调团队精神,所以我们要在竞争的基础上合作,合作的基础上竞争,合作也是我校的优良传统。我们几位老师准备做到一盘棋的思想,有问题一起分析解决,复习资料要共享。在工作中,教师间的合作就显得尤为重要。

  (7)平等对待学生,关心每一位学生的成长,宗旨是教出来的学生不一定都很优秀,但肯定每一位都有进步;让更多的学生喜欢数学。力争以严、实、精、活的教风带出勤、实、悟、活的学风。

高二数学教学计划7

  本章是高考命题的主体内容之一,应切实进行全面、深入地复习,并在此基础上,突出解决下述几个问题:(1)等差、等比数列的证明须用定义证明,值得注意的是,若给出一个数列的前 项和 ,则其通项为 若 满足 则通项公式可写成 .(2)数列计算是本章的中心内容,利用等差数列和等比数列的通项公式、前 项和公式及其性质熟练地进行计算,是高考命题重点考查的内容.(3)解答有关数列问题时,经常要运用各种数学思想.善于使用各种数学思想解答数列题,是我们复习应达到的目标. ①函数思想:等差等比数列的通项公式求和公式都可以看作是 的函数,所以等差等比数列的某些问题可以化为函数问题求解.

  ②分类讨论思想:用等比数列求和公式应分为 及 ;已知 求 时,也要进行分类;

  ③整体思想:在解数列问题时,应注意摆脱呆板使用公式求解的思维定势,运用整

  体思想求解.

  (4)在解答有关的数列应用题时,要认真地进行分析,将实际问题抽象化,转化为数学问题,再利用有关数列知识和方法来解决.解答此类应用题是数学能力的综合运用,决不是简单地模仿和套用所能完成的.特别注意与年份有关的等比数列的第几项不要弄错.

  一、基本概念:

  1、 数列的定义及表示方法:

  2、 数列的项与项数:

  3、 有穷数列与无穷数列:

  4、 递增(减)、摆动、循环数列:

  5、 数列的通项公式an:

  6、 数列的前n项和公式Sn:

  7、 等差数列、公差d、等差数列的结构:

  8、 等比数列、公比q、等比数列的结构:

  二、基本公式:

  9、一般数列的通项an与前n项和Sn的关系:an=

  10、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d0时,an是关于n的一次式;当d=0时,an是一个常数。

  11、等差数列的前n项和公式:Sn= Sn= Sn=

  当d0时,Sn是关于n的二次式且常数项为0;当d=0时(a10),Sn=na1是关于n的正比例式。

  12、等比数列的通项公式: an= a1 qn-1 an= ak qn-k

  (其中a1为首项、ak为已知的第k项,an0)

  13、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);

  当q1时,Sn= Sn=

  三、有关等差、等比数列的结论

  14、等差数列的任意连续m项的`和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、仍为等差数列。

  15、等差数列中,若m+n=p+q,则

  16、等比数列中,若m+n=p+q,则

  17、等比数列的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、仍为等比数列。

  18、两个等差数列与的和差的数列、仍为等差数列。

  19、两个等比数列与的积、商、倒数组成的数列

  、 、 仍为等比数列。

  20、等差数列的任意等距离的项构成的数列仍为等差数列。

  21、等比数列的任意等距离的项构成的数列仍为等比数列。

  22、三个数成等差的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d

  23、三个数成等比的设法:a/q,a,aq;

  四个数成等比的错误设法:a/q3,a/q,aq,aq3

  24、为等差数列,则 (c0)是等比数列。

  25、(bn0)是等比数列,则 (c0且c 1) 是等差数列。

  四、数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。关键是找数列的通项结构。

  26、分组法求数列的和:如an=2n+3n

  27、错位相减法求和:如an=(2n-1)2n

  28、裂项法求和:如an=1/n(n+1)

  29、倒序相加法求和:

  30、求数列的最大、最小项的方法:

  ① an+1-an= 如an= -2n2+29n-3

  ② an=f(n) 研究函数f(n)的增减性

  31、在等差数列 中,有关Sn 的最值问题常用邻项变号法求解:

  (1)当 0时,满足 的项数m使得 取最大值.

  (2)当 0时,满足 的项数m使得 取最小值。

  在解含绝对值的数列最值问题时,注意转化思想的应用。

  以上就是高二数学学习:高二数学数列的所有内容,希望对大家有所帮助!

高二数学教学计划8

  一、教学内容与内容解析

  1.内容:

  统计,简单随机抽样,抽签法,随机数表法。

  2.内容解析:

  本节课是人教版《高中数学》第三册(选修Ⅱ)的第一章“概率与统计”中的“抽样方法”的第一课时:简单随机抽样.其主要内容是介绍简单随机抽样的概念以及如何实施简单随机抽样.数理统计学包括两类问题,一类是如何从总体中抽取样本,另一类是如何根据对样本的整理、计算和分析,对总体的情况作出一种推断.可见,抽样方法是数理统计学中的重要内容.简单随机抽样作为一种简单的抽样方法,又在其中处于一种非常重要的地位.因此它对于学习后面的其它较复杂的抽样方法奠定了基础,同时它强化对概率性质的理解,加深了对概率公式的运用.因此它起到了承上启下的作用,在教材中占有重要地位.

  本节课是在学生初中已学习了统计初步知识的基础上,系统学习统计的基本方法,体验统计思想的第一课时.本节课通过结合具体的实际问题情景,使学生认识到随机抽样的必要性和重要性,进而分析得到简单随机抽样的定义、常用实施方法.这些活动的实施就是想引导学生从现实生活或其它学科中提出具有一定价值的统计问题,初步形成运用统计的思想和方法(用数据说话)来思考问题和解决问题的习惯.。

  本课题为“简单随机抽样”,主要学习简单随机抽样的理论与方法.从理论上讲,“简单”是指抽取的样本为“简单随机样本”,获取简单随机样本的抽样方法称为简单随机抽样.简单随机抽样要满足以下两个条件:(1)代表性,即要求样本的每个分量Xi与所考察的总体X具有相同的概率分布F(X);(2)独立性,X1,X2,…,Xn为相互独立的随机变量,也就是说,每个观察结果不影响其它观察结果,也不受其它观察结果的影响.当然在有限总体中,样本的各个观察结果可以是不独立的.在本节课中,要将这些关于随机抽样的理论,用浅显的例子渗透在学生的学习过程中.因此,教学的内容应侧重于如何使抽取的数据能代表总体,即抽取的样本要能反映总体的本质特征.要抓住两个特征展开,要求抽取的样本有代表性,样本的容量要适当,太大没有必要,太小不能反映总体的特征.其次,要体现独立性,在简单随机抽取时,总体中每个个体被抽到的概率是相等的,说明这种抽样的方法是独立的.抽取的样本的分布与总体分布相似度越高,样本的代表就越大.这就为后续学习三种抽样方法的形成与评价提供基础.

  从知识的应用价值来看,重视数学知识的应用和关注人文内涵是新教材的显著特点.丰富的生活实例为学生用数学的眼光看待生活,体验生活即数学的理念,体验用算法思想解决模式化问题的作用,有助于学生对统计思想和方法的掌握,增加学生的感性认识.。

  二、教学目标与目标解析

  1.目标:

  (1)通过实例,了解学习统计的意义,了解统计学的基本内容和方法.

  (2)通过实例,了解随机抽样的必要性.

  (3)理解随机抽样的概念.这里随机抽样的概念在初中阶段学生已经学习过,但在此处学习正是体现知识的螺旋上升,这里提出的总体、个体和样本的概念应该更加理性.

  (4)通过实例分析随机抽样应满足的基本条件.作为教师要明确学习随机抽样的主要目的是用样本估计总体,要使所抽取的样本能估计总体,抽取数据的方法要根据对数据的要求而定,方法应该是量身定做的.

  (5)体会简单随机抽样的方法.教学过程应该充分体现学生的主体作用,不囿于教材顺序的限定,结合学生已有的知识结构,充分展示学生的学习经验和能力.

  2.目标解析:

  教学目标(3)和(4)是本节课的教学重点也是难点。我们要建立一种数学的基本思维过程,也是人们学习和生活中经常使用的思维方式。借助学生已有生活常识,形成推理的直观认识;让学生通过自己动手体验数学的一种基本思维过程,经历人们学习和生活中经常使用的思维活动。

  教学目标(5)是学生初学时不易达到的目标,教学时要紧密地结合学生熟悉的已学过的数学实例和生活实例,是学生体会解决问题时应该关注的要点,体会简单随机抽样的方法.应用简单随机抽样的方法。

  三、教学问题诊断分析

  教学重点、难点

  重点:简单随机抽样的.定义,抽样方法,各种方法适用情况,及对比

  难点:简单随机抽样中的等可能性及简单随机抽样的特点,随机数表法应用。

  本节课是学生在义教阶段学习了数据的收集、抽样、总体、个体、样本等统计概念以后,进一步学习统计知识的.这是义教阶段统计知识的发展,因此教学过程不应是一种简单的重复,也不应停留在对普查与抽样优劣的比较和方法的选择,而应该发展到对抽样进一步思考上,主要应集中的以下四个问题上:(1)为什么要进行随机抽样;(2)什么是随机抽样(数理统计上的随机抽样概念);(3)简单随机抽样应满足什么样的条件;(4)如何进行简单随机抽样.教学的重点是使学生关注数据收集的方法应该由目的与要求所决定的,任何数据的收集都有一定的目的,数据的抽取是随机的.要更加理性地看待数据收集的方法,要从随机现象本身的规律性来看待数据收集的方法.特别是要突出简单随机样本的两个特征.要改变学生仅从形式上来理解简单随机抽样的问题.在教学中学生可能会产生随机抽样中简单随机抽样、系统抽样和分层抽样的雏形,教师不必进一步明确界定概念,可待后续的学习中进一步完善.

  如何发现随机抽样的公平性,也就是“如何去观察,才能发现规律”。学生可以很顺利地得到几个事实,但是如何去观察,这是学生学习时遇到的第一个教学问题。也是本节课的教学难点之一。教学时,应通过实例,帮助学生总结出观察一定要有目标,并用具体问题让学生练习进行体会。

  四、教学支持条件

  本节课教学支持条件首先是学生已经学习过随机抽样的概念,因此教学可以在此基础上展开.教材例题的选取都来自于学生的生活经验,便于学生理解.可以通过投影和计算机,扩展学生收集数据的方法.基于本节课内容的特点和学生的心理及思维发展的特征,在教学中选择问题引导、事例讨论和归纳总结相结合的教学方法.与学生建立平等融洽的互动关系,营造合作交流的学习氛围.在引导学生进行观察、分析、抽象概括、练习巩固各个环节中运用多媒体进行演示,增强直观性,提高教学效率,激发学生的学习兴趣.

  五、教学过程设计

  六、目标检测设计

  (1)利用随机数表法从40件产品中抽取10件检查。

  (2)分小组进行社会问题的实际调查,题目自拟。

  (设计意图:通过训练,巩固本课所学知识,检测运用所学知识解决问题的能力;实习作业的设置为了教会学生怎样利用资料进行数学学习,同时让学生了解网络是自主学习和拓展知识面的一个重要平台。这是本节内容的一个提高与拓展。)

高二数学教学计划9

  教材分析:

  本学期我任教05财会(3)班数学,所选的教材是人民教育出版社职业教育中心编著的《数学(基础版)》。该教材是在原有职业高中数学教材的基础上,依据国家教育部新制定的《中等职业学校数学教学大纲(试行)》重新编写的,具有以下特点:

  1.注重基础:

  “大纲”对传统的初等数学教育内容进行了精选,把理论上、方法上以及代生产与生活中得到广泛应用的知识作为各专业必学的基本内容。根据“大纲”要求,把函数与几何,以及研究函数与几何的方法作为教材的核心内容。

  2.降低知识起点

  多数中职学生对学过的数学知识需要复习与提高,才能顺利进入中职阶段的数学学习。这套数学教材编写从学生的实际出发,提高中职学生的数学素质,使多数学生能完成“大纲”中规定的教学要求,以保证中职学生能达到高中阶段的基本数学水准。

  3.增加较大的使用弹性

  考虑中等职业学校专业的多样性,各对数学能力的要求也不相同,教学要求给出了较大的选择范围,增加了教学的弹性。教材中给出了三个层次:一是必学的内容分两种教学要求(在教参中指出);二是教材中配备一些难度较大的习题,供学有余力的学生去做,培养这些学生的解题能力;三是编写了选学内容,选学内容主要是深化基本内容所学知识和应用基本内容解决实际问题的能力。

  4.注重数学应用意识的培养

  每章专设应用一节,列举数学在生活实际、现代科学和生产中应用的例子,培养学生用数学解决实际问题的意识和能力。

  5.注重培养学生使用计算机工具的能力

  在“大纲”中,要求培养学生使用基本计算工具的恩能够里。这就要求学生掌握使用计数器的技能,所以在新教材中增加了用计数器做的练习题。有条件的学生还可以培养学生使用计算机技术。

  教材内容:

  本学期使用的是第二册的教材,内容包括:平面解析几何,立体几何,排列、组合与二项式定理,概率与统计初步。

  每章编写结构:引言,正文(大节、小节、联系、习题),复习问题和复习参考题,阅读材料(数学文化)等。除个别标注星号的选学内容外,都是必学内容。

  学生情况分析及教学对策:

  05财会(3)班是我刚接手的班级,因而对学生的情况并不是非常熟悉。从总体上看,该班的学习中坚力量主要在一小部分的.女生,其他学生学习积极性较差。在要学习的学生当中,普遍表现出底子薄、基础差的特点,对以往知识的缺漏非常多。因而在教学过程当中,及时补遗、查漏补缺尤为重要。知识引入环节我设置旧知识补遗,先回顾新课所涉及到的旧知识点;对学生的要求以能处理简单的操作题为主。另外,舒适的环境对学生的情绪也有挺大的影响,因而在教学过程中应渗入环境教育,培养学生的环境保护意识。

  教学进度表

  周次

  起讫月日

  教学内容

  教时

  执行情况

  1

  8月28日至9月3日

  学期准备工作

  2

  9月4日至9月10日

  8.1(1);8.2(2);8.3(2)

  5

  3

  9月11日至9月17日

  8.4(2);8.5(2);8.6(1)

  5

  4

  9月18日至9月24日

  8.7(1);8.8(1);习题(1);8.9(2)

  5

  5

  9月25日至10月1日

  8.10(1);8.11(1);8.12(1);习题(2)

  5

  6

  10月2日至10月8日

  国庆放假

  7

  10月9日至10月15日

  8.13(3);8.14.1(2)

  5

  8

  10月16日至10月22日

  8.14.2(1);8.15(3);习题(1)

  5

  9

  10月23日至10月29日

  习题(1);第一章复习(2);9.1(2)

  5

  10

  10月30日至11月5日

  9.2(1);9.3(2);9.4(1);9.5(1)

  5

  11

  11月6日至11月12日

  期中考复习

  5

  12

  11月13日至11月19日

  期中考试

  13

  11月20日至11月26日

  9.6(1);复习(2);9.7(1);9.8(1)

  5

  14

  11月27日至12月3日

  9.9(1);9.10(2);9.11(2)

  5

  15

  12月4日至12月10日

  习题(2);9.12(1);9.13(2)

  5

  16

  12月11日至12月17日

  9.14(1);9.15(1);9.16(2);9.17(1)

  5

  17

  12月18日至12月24日

  9.17(1);习题(2);9.18(1)

  5

  18

  12月25日至12月31日

  9.19(2);9.20(1);9.21(2)

  5

  19

  1月1日至1月7日

  9.22(1);9.23(3);9.24(1)

  5

  20

  1月8日至1月14日

  9.25(3);习题(2)

  5

  21

  1月15日至1月21日

  期末复习

  5

  22

  1月22日至1月28日

  期末考试

  23

  1月29日至2月4日

  期末结束工作

  24

  2月5日至2月11日

  期末结束工作

高二数学教学计划10

  一、指导思想和要求

  贯彻教育部的有关教育教学计划,在高一级部的直接领导下,严格执行学校的各项教育教学制度和要求,认真完成各项任务。教学的宗旨是使学生在获得作为一个现代公民所必须的基本数学知识和技能的同时,在情感、态度、价值观和一般能力等方面都能获得充分的发展,为学生的终身学习、终身受益奠定良好的基础。为高考做准备,为学生打下坚实的基础,是我们教学目标。

  二、主要工作

  1、认真学习新课标,转变教师的教学理念加强教师学习教育教学的理论学习。以学习新课标为主要的学习内容,组织切实有效的学习讨论活动,用先进的教育理念支撑深化教育改革,改变传统的教学模式。要求教师们把新课标的理念渗透到教学中,教学注重以培养学生的合作交流意识

  2、转变教师的教学方式转变学生的学习方式教师要以新理念指导自己的教学工作,牢固树立学生是学习的主人,以平等、宽容的态度对待学生,在沟通和“对话”中实现师生的共同发展,努力建立互动的师生关系。本学期要继续以改变学生的学习方式为主,提倡研究性学习、发现性学习、参与性学习、体验性学习和实践性学习,以实现学生学习方式多样化地转变,促进学生知识与技能,情感、态度与价值观的整体发展,为学生的终身学习打下坚实的基础。

  3、发挥备课组的集体作用集体备课,教案基本统一。每一节课都有一个主备,然后集体讨论,补充完善。同时,根据各班的具体情况,适当进行调整,以适应学生的实际情况为标准,让学生学会并且掌握,不搞教条主义和形式主义。教案应体现知识体系、思维方法、训练应用,以及渗透运用等,要有对重点难点的分析和解决方法。备课组要做到资源共享,反对搞单干。作业在完成课本上的练习和习题的基础上,根据不同层次的学生,要求做统一所订资料中的不同题目。

  4、配合“周考和月考制度”做好周考和月考的制卷和阅卷工作按照高一级部的制度,每周日晚自习要进行考试,主要考试学科是:语文、数学、外语,每三周左右时间数学考试一次。要求本组数学老师积极做好制卷和批改任务,具体工作另行安排。同时,每月要大考一次,要求本组老师积极做好制卷和阅卷工作。

  三、一些固定工作安排

  1、每周的星期三的下午第三节课为固定的备课组活动时间,每次活动都有一个主题,都有一个中心发言人,都有文字记录。

  2、每位教师要多听同科组的课,并诚恳的提出自己的意见。

  3、每位教师每周做好下周集体教案的撰写和修改工作。

  4、每三周一次的数学周考的制卷和批改工作。(具体计划另行制定)

  5、每月一次的数学月考的制卷和批改工作。

  一、教学思想:

  教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。使学生懂得数学来源于实践又反过来作用于实践。提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度。顽强的'学习毅力和独立思考、探索的新思想。培养学生应用数学知识解决问题的能力。

  同时针对初三学生的特点,以中考、全国数学竞赛为出发点,教学上打算在全面抓好“双基”的同时,拔出一部分尖子起领头作用,对有学习积极性而基础一般或较差的学生给予大力的帮助,提高他们的学习成绩,对躺倒不学的人首先做好他们的思想工作,在采用较低难度的作业和要求逐步培养他们的学习兴趣,从而提高他们的学习成绩。

  二、在教学过程中抓住以下几个环节

  (1)认真备课。认真研究教材及考纲,明确教学目标,抓住重点、难点,精心设计教学过程,重视每一章节内容与前后知识的联系及其地位,重视课后反思,设计好每一节课的师生互动的细节。

  (2)抓住课堂40分钟,提高课堂效率。学期的教学内容共四章,按照教学计划,备课统一进度,统一练习,进行教学,精心设计每一节课的每一个环节,争取每节课达到教学目标,突出重点,分散难点,增大课堂容量组织学生人人参与课堂活动,使每个学生积极主动参与课堂活动,使每个学生动手、动口、动脑,及时反馈信息提高课堂效益。

  (3)课后反馈。精选适当的练习题、测试卷,及时批改作业,发现问题及时给学生面对面的指出并指导学生搞懂弄通,不留一个疑难点,让学生学有所获。

  三、断钻研业务,提高业务能力及水平。

  积极参加业务学习,看书、看报,参加学校组织的培训,使之更好的为基础教育的改革努力,掌握新的技能、技巧,不断努力,取长补短,扬长避短,努力使教学更务实,方法更灵活,手段更先进。积极攒写论文,案例,反思,主动参与课题研究。

  6、初三年级数学备课组教学计划数学计划

  一、授课教师:

  二、指导思想:

  1、深入推进和贯彻“二期课改”的精神,以新的教育思想和课程理念实施,以学生发展为本,以培养学生创新精神和实践能力为重点的素质教育,探索有效教学的新模式。

  2、针对近年来中考命题的变化和趋势进行研究,收集试卷,精选习题,建立题库,努力把握中考方向,积极探索高效复习途径,力求达到减负加压增效。

  三、教学目标:

  1、态度与价值观:

  通过学习交流、合作、讨论的方式,积极探索,改进学生的学习方式,提高学习质量,逐步形成正确地数学价值观。

  2、知识与技能:

  掌握到一元二次方程解应用题,掌握可化为一元二次方程、一元二次方程的有关方程的方法,掌握相似形的性质、判定。掌握锐角的三角比及解直角三角形的方法。

  3、过程与方法:

  [1]经历“观察——探索——猜测——证明”的学习过程,体验科学发现的一般规律。

  [2]通过探索、学习,使学生逐步学会正确、合理地进行运算,逐步学会观察、分析、综合、抽象,会用归纳、演绎、类比进行简单地推理。

  四、学习时间及内容安排:

  9月~10月:

  一元二次方程的应用。

  11月~12月:

  相似形。

  20xx年1月:

  期终考试。

  五、学习资料:

  《一课一练》、《周周练》。

  六、考试备忘录:

  10月下旬期中考试,1月上旬期终考试。

高二数学教学计划11

  一、目标要求

  1.深入钻练教材,在借鉴她校课件基础上,结合所教学生实际,确定好每节课所教内容,及所采用的教学手段、方法。

  2.本期还要帮助学生搞好《数学》必修内容的复习,一是为学生学业水平检测作准备,二是为高三复习打基础。

  3.本期的专题选讲务求实效。

  4.继续培养学的学习兴趣,帮助学生解决好学习教学中的困难,提高学生的数学素养和综合能力。

  5.本期重点培养和提升学生的抽象思维、概括、归纳、整理、类比、相互转化、数形结合等能力,提高学生解题能力。

  二、教学措施:

  1、认真落实,搞好集体备课。每周至少进行一次集体备课,每位老师都要提前一周进行单元式的备课,集体备课时,由一名老师作主要发言人,对下一周的教材内容作分析,然后大家研究讨论其中的重点、难点、教学方法等。在星期一的集合备课中,主要是对上周备课中的情况作补充。每次备课都要用一定的时间交流一下前一段的教学情况,进度、学生掌握情况等。

  2、详细计划,保证练习质量。教学中用配备资料是《高中数学新新学案》,要求学生按教学进度完成相应的习题,老师要给予检查和必要的讲评,老师要提前向学生指出不做的题,以免影响学生的学习。每周以内容滚动式编一份练习试卷,星期五发给学生带回家完成,星期一交,老师要进行批改,存在的普遍性问题最好安排时间讲评。试题量控制为10道选择题(4旧6新)、4道填空题(1旧3新)、4道解答题。

  3、抓好第二课堂,稳定数学优生,培养数学能力兴趣。本学期第二课堂与数学竞赛准备班继续分开进行辅导。平常意义上的第二课堂辅导学生,主要是以兴趣班的形式,以复习巩固课堂教学的同步内容为主,一般只选用常规题为例题和练习,难度低于高考接近高考,用专题讲授为主要形式开展辅导工作。

  4、加强辅导工作。对已经出现数学学习困难的学生,教师的下班辅导十分重要,所以每位老师必须重视搞好辅导工作。教师教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,既要注意照顾好班上优生层,更不能忽视班上的困难学生。

  高二文科第一学期包括了必修三和选修1-1两本教材,通过这一学期的教学,重点要培养学生利用数学各部分内容间的联系,特别是蕴含在数学知识中的数学思想方法,启发和引导学生学习类比、推广、特殊化、化归等数学思考的常用逻辑方法,使学生学会数学思考与推理,不断提高数学思维能力。

  本学期我担任高二(1、3)班的数学教学工作,在经历了文理科分科之后,我对两个班上所有学生的数学学习情况有了更进一步的了解。两个班中,女生占了将近70%,两个班的数学成绩可以说都很不理想,大部分的学生基础都很薄弱。一班的学生数学基础相对三班而言较好一点,但仍然缺乏自主学习的能力;三班中有很多的学生甚至有厌学、甚至弃学的现象。为了改变这种不良局面,使两班的学生成绩赶上来,针对学生的特点及班级的实际情况,特制订如下教学计划。

  本学期共有六章内容

  必修三

  1.算法初步

  2.统计

  3.概率

  选修1-1

  1.常用逻辑用语

  2.圆锥曲线方程

  3.导数及其应用

  本学期的重点章节为必修三中的概率和选修1-1中的圆锥曲线方程和导数及其应用,其它章节相对来说高考的要求较低一些。

  1.深入钻研教材,以教材为核心,以纲为纲,以本为本深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系和网络结构,细致领会教材改革的精髓,把握通性通法,逐步明确教材对教学形式、内容和教学目标的影响。做到对知识全面掌握,从而在教学中能有的放矢。

  2.坚持向课堂45分钟要效益,立足课堂,加强课堂中的教学引导,激发和培养学生的学习兴趣和学习能力。

  3.坚持每章一测的原则,让学生通过不断地考试练习,从而能够熟练地掌握和应用所学的知识,并且为后续的学习做好铺垫。

  4.对学习能力较强、成绩较好的学生要加强其能力培养,为两年后的高考夯实基础。

  5.对学习成绩处在中等水平的'学生要狠抓基础落实,使他们将知识掌握并且能够进行基本初等应用。

  6.对学习已经出现困难的学生则首先要求其掌握基础,能够对基础知识进行熟练掌握,并在此基础上进行提高。

  7.对于厌学、甚至弃学的学生则要从培养他们的兴趣入手,兴趣是最好的老师,让这些学生首先对数学产生兴趣才能够进行更进一步的学习。

  高一整个学年中每学期都有两本必修教材,时间紧,能够做到的就是保质保量地上好每一节课,课后的作业进行认真布置和批改,并且能够及时的对固学案上的较难题目进行详细的讲解。

  不足之处在于时间上的不足,导致不能够及时的对章节内容进行检测导致月考和期末成绩的不尽人意,部分学生也会产生懈怠的情绪。

高二数学教学计划12

  一、指导思想:

  在学校教学工作意见指导下,严格执行学校的各项教育教学制度和要求,强化数学教学研究,提高全组老师的教学、教研水平,明确任务,团结协作,圆满完成教学教研任务。具体任务如下:

  1.使学生获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

  2.提高学生的`空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

  3.提高学生提出、分析和解决数学问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

  4.发展学生数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

  5.提高学生学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

  6.使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

  二、教法分析:

  1.选取与内容密切相关的、典型的、丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论、数学的思想和方法、以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。

  2.通过“观察”、“思考”、“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

  3.在教学中强调类比、推广、特殊化、化归等数学思想方法,尽可能养成其逻辑思维的习惯。

  三、教学措施:

  1.全组老师精诚团结、互相关心、互相支持,力争使我们高二数学组成为一个充满活力的优秀集体。互相听课、取长补短、完善自我,不拘形式、时间、地点的加强交流。在日常工作当中,既保持和优化个人特色、又实现资源共享,同类班级的相关工作做到基本统一。

  2.认真落实、搞好集体备课。每周周四上午三、四节进行集体备课,认真分析教材内容,研究讨论其中的重点、难点、教学方法等。

  3.详细计划、保证练习质量。教学中充分利用好配备资料,要求学生按教学进度完成相应的习题,每周以内容“滚动式”出好周练试卷,老师要收齐批改,存在的普遍性问题要安排时间讲评,成绩周四前自行输入年级电脑。

  4.抓好第二课堂,稳定数学优生,培养数学能力兴趣。各班要培育好本班的优生,注意激发学生的学习兴趣,随时注意学生学习方法的指导。

  5.加强辅导工作。对已经出现数学学习困难的学生,教师的下班辅导十分重要。教师教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,既要注意照顾好班上优生层,更不能忽视班上的困难学生。

高二数学教学计划13

  数学分析

  1。解析几何是利用代数方法来研究几何图形性质的一门学科,它包括平面解析几何和空间解析几何两部分。它的主要研究对象是直线和平面、二次曲线和二次曲面。在大学阶段,“解析几何”是以圆锥曲线和圆锥曲面为研究对象的一门学科,研究三元二次方程表示的曲线和曲面,如空间直线、平面、柱面、锥面、旋转曲面和二次曲面的方程等,研究的内容比较固定,研究方法比较成熟。高中阶段主要研究二元二次方程所表示的曲线,比如圆、椭圆、双曲线、抛物线等。

  2。“解析几何思想”代表了研究曲线和曲面的一般方法和手段,即用代数为工具解决几何问题。用解析几何的思想方法来研究几何问题,思维工程可以表现为以下步骤:第一,用代数的语言来描述几何图形,例如“点”可以用“数对”表示,“曲线”可以用“方程”表示等;第二,把几何问题转化为代数问题,例如,“两直线平行”可以转化为“两直线方程组成的方程组无解”等;第三,实施代数运算,求解代数问题;第四,将代数解转化为几何结论。随着数学本身的发展,出现了代数数论、代数几何等的数学分支,而拓扑学、泛函等代数工具都可以作为研究心得曲线和曲面的工具,这些都是“解析几何思想”的发展个推广。解析几何初步的重点是帮助学生理解解析几何的基本思想,即把代数作为一种工具和手段来研究几何问题。

  3。“坐标系”是解析几何思想的主要组成部分,因为建立了坐标系,就能把曲线和曲面的性质用代数来表示,从而把几何问题转化为代数问题来解决。适当地选择坐标系可以大大简化对图形性质的研究,但图形的性质不会竖着坐标系的变化而改变。我们要研究的正是那些和坐标系的选择无关的.性质;或者说建立坐标系正是为了摆脱图形对坐标系的依赖,这在对数上就表现为某个线性变换群下的不变量和不变关系。

  4。圆锥曲线是我们生活中最基本的图形。①圆锥曲线(面)可以帮助我们刻画一些基本的运动。例如,太阳系中,八大行星的运动轨迹都是椭圆。②光学性质和圆锥曲线是密不可分的,基本的光学性质都是由圆锥曲线体现出来的。例如,探照灯就是利用抛物面的光学性质制作而成的,它可以将点光源发出的光折射成平行光,照射到足够远的地方。几乎所有的光学仪器都是依照圆锥曲线(面)的性质制成的。③研究圆锥曲线(面)的性质时体现解析几何本质的最好载体,即便是在大学数学系的学习中,如何利用方程的系数确定二次曲线的形状,揭示其规律也是数学的经典内容。

  教育分析

  1。有助于学生数形结合思想的培养。

  解析几何的本质是用代数的方法研究图形的几何性质,它沟通了代数与几何之间的联系,体现了数形结合的重要思想。在解析几何初步的学习中,经历将几何问题代数化、处理代数问题、分析代数结果的几何含义、解决几何问题的过程,有助于学生认识数学内容之间的内在联系,体会数形结合的思想,形成正确的数学观。

  2。是培养学生运算能力的重要载体。

  运算思想是数学中最重要的思想之一。解析几何的运算,往往有较强的综合性,设计相应的代数方程知识(包括消元思想、整体思想、函数思想、同解原理、韦达定理、方程的解、构造不等式、参变量代换、求解不等式)等内容,对学生计算能力要求较高。在解决解析几何问题时,要注重“数”与“形”的统一,在计算时,要结合图形自身的特点,充分挖掘图形的.几何结论,这往往是解决问题的突破口和简化解题过程的有效方法。比如,涉及圆的问题时,注重运用圆的相关几何性质,对于直线与圆的位置关系要强化几何处理,淡化代数处理方法,解析几何独有的特点,最培养学生的运算能力起到了独特的作用。

  课标解读

  1。整体定位

  “解析几何初步”研究的问题是直线和圆,及其之间的关系,还有空间直角坐标系的概念。高中阶段解析几何内容的分布,除了“解析几何初步”外,在选修系列1,2中,都延续了解析几何的内容,设计了“圆锥曲线与方程”。在选修系列4的《几何证明选讲》中,还将继续研究圆锥曲线。研究圆锥曲线有两种方法:综合几何的方法和解析几何的方法。在选修系列4的《几何证明选讲》中,运用了综合几何的方法。

  “解析几何初步”是要依托直线的方程与圆的标准方程,让学生把握用代数方法解决几何问题的基本步骤,初步形成代数方法解决几何问题的能力,帮助学生理解解析几何的基本思想。

  2。具体要求

  (1)直线与方程

  ①在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素;

  ②理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式;

  ③能根据斜率判定两条直线平行或垂直;

  ④根据确定直线位置关系的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系;

  ⑤能用解方程组的方法求两直线的.交点坐标;

  ⑥探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。

  (2)圆与方程

  ①回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程与一般方程;

  ②能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系;

  ③能用直线和圆的方程解决一些简单的问题。

  (3)在平面“解析几何初步”的学习过程中,体会用代数方法处理几何问题的思想。

  (4)空间直角坐标系

  ①通过具体情境,感受建立空间直角坐标系的必要性,了解空间直角坐标系,会空间直角坐标系刻画点的位置;

  ②通过表示特殊长方体(所有棱分别与坐标轴平行)顶点的坐标,探索并得出空间两点间的距离公式。

  《标准》中对“解析几何初步”的要求只是阶段性要求,在选修系列1,2中,还将进一步学习圆锥曲线与方程的内容。因此,对本部分内容的教学要把握好“度”,特别是对于解析几何思想的理解不能要求一步到位。

  3。课标解读

  (1)要注重知识的发生与发展的过程

  解析几何初步的教学,要注重知识的发生与发展的过程,首先将几何问题代数化,用代数的语言描述几何元素及其关系,进而将几何问题代数化;处理代数问题;分析代数结果的几何含义,最终解决几何问题。同时,应强调借助几何直观理解代数关系的意义,即对代数关系的几何意义的解释。让学生在这样的过程中,不断地体会“数形结合”的思想方法。

  数学课程应返璞归真,努力揭示数学概念、法则、结论的发展过程和本质,要通过学生的自主探索活动,使学生理解数学概念、结论逐步形成的过程,体会蕴涵在其中的思想方法。在解析几何初步的教学中,同样要通过观察、操作探索,确定直线与圆的几何要素,并由此探索掌握直线与圆的几种形式的方程,探索掌握一些距离公式。

  比如如何在平面直角坐标系中描述直线,这是解析几何教学中遇到的第一个问题。在坐标系中,一条直线或者与x轴平行,或者与x轴相交。与x轴平行的直线的代数特征很简单,这条直线上的点的纵坐标是个常数,即y=a。除了x=a,还有什么方法可以刻画与x轴相交的直线?也就是如何用代数的方法刻画直线的斜率。

  (2)在高中阶段,直线的斜率一般一般有三种表示方式

  ①用倾斜角的正切

  这是传统教材的方式,由于倾斜角是大于等于0°小于180°,倾斜角与其正切一一对应的(90°除外);当然,也可以用倾斜角的余弦值表示直线的斜率,倾斜角与其余弦值是一一对应的,但这种表示要复杂一些,一般都选择使用倾斜角的正切。

  这需要先引入0°到180°的正切函数的概念。

  ②用向量

  内容结构

  1。知识内容

  2。 章节安排

  本章教学时间约需18课时,具体分配如下:

  1 直线与直线的方程 8课时

  2 圆与圆的方程 5课时

  3 空间直角坐标系 3课时

高二数学教学计划14

  一、学生基本情况

  261班共有学生75人,268班共有学生72人。268班学习数学的气氛较浓,但由于高一函数部分基础特别差,对高二乃至整个高中的数学学习有很大的影响,数学成绩尖子生多或少,但若能杂实复习好函数部分,加上学生又很努力,将来前途无量。若能好好的引导,进一步培养他们的学习兴趣,

  二、教学要求

  (一)情意目标

  (1)通过分析问题的方法的教学、通过不等式的一题多解、多题一解、不等式的一题多证,培养学生的学习的兴趣。

  (2)提供生活背景,使学生体验到不等式、直线、圆、圆锥曲线就在身边,培养学数学用数学的意识。

  (3)在探究不等式的性质、圆锥曲线的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识

  (4)基于情意目标,调控教学流程,坚定学习信念和学习信心。

  (5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。 (6)让学生体验发现 挫折矛盾顿悟新的发现这一科学发现历程的幻妙多姿

  (二)能力要求

  1、培养学生记忆能力。

  (1)在对不等式的性质、平均不等式及思维方法与逻辑模式的学习中,进一步培养记忆能力。做到记忆准确、持久,用时再现得迅速、正确。

  (2)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。 (3)通过揭示解析几何有关概念、公式和图形直观值见的对应关系,培养记忆能力。

  2、培养学生的运算能力。

  (1)通过解不等式及不等式组的训练,培养学生的运算能力。

  (2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。

  (3)通过解析法的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。

  (4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。

  (5)利用数形结合,另辟蹊径,提高学生运算能力。

  3、培养学生的思维能力。

  (1)通过含参不等式的求解,培养学生思维的周密性及思维的逻辑性。

  (2)通过解析几何与不等式的一题多解、多题一解、通过不等式的一题多证,培养思维的灵活性和敏捷性,发展发散思维能力。

  (3)通过不等式引伸、推广,培养学生的创造性思维。

  (4)加强知识的横向联系,培养学生的数形结合的能力。

  (5)通过解析几何的概念教学,培养学生的正向思维与逆向思维的能力。

  (6)通过典型例题不同思路的分析,培养思维的灵活性,是学生掌握转化思想方法。

  4、培养学生的观察能力。

  (1)在比较鉴别中,提高观察的准确性和完整性。

  (2)通过对个性特征的`分析研究,提高观察的深刻性。

  (三)知识要求

  1、掌握不等式的概念、性质及证明不等式的方法,不等式的解法;

  2、通过直线与圆的教学,使学生了解解析几何的基本思想,掌握直线方程的几种形式及位置关系,掌握简单线性规划问题,掌握曲线方程、圆的概念。

  3、掌握椭圆、双曲线、抛物线的定义、方程、图形及性质。

  三、教材简要分析

  1、不等式的主要内容是:不等式性质、不等式证明、不等式解法。不等式性质是基础,不等式证明是在其基础上进行的;不等式的解法是在这一基础上、依据不等式的性及同解变形来完成的。20xx年高二下数学教学计划20xx年高二下数学教学计划。不等式在整个高中数学中是一个重要的工具,是培养运算能力、逻辑思维能力的强有力载体。

  2、直线是最简单的几图形,是学习圆锥曲线、导数和微分等知识的的基础。,是直线方程的一个直接应用。主要内容有:直线方程的几种形式,线性规划的初步知识,两直线的位置关系,圆的方程;斜率是最重要的概念,斜率公式是最重要的公式,直线与圆是数形结合解析几何相互为用思想的载体。

  3、圆锥曲线包括椭圆、双曲线、抛物线的定义,标准方程,简单几何性质,以及它们在实际中的一些运用。椭圆、双曲线、抛物线分别是满足某些条件的点的轨迹,由这些条件可以求出它们的方程,并通过分析标准方程研究它们的性质。

  四、重点与难点

  (一)重点

  1、不等式的证明、解法。

  2、直线的斜率公式,直线方程的几种形式,两直线的位置关系,圆的方程。

  3、椭圆、双曲线、抛物线的定义,标准方程,简单几何性质。

  (二)难点

  1、含绝对值不等式的解法,不等式的证明。

  2、到角公式,点到直线距离公式的推导,简单线性规划的问题的解法。

  3、用坐标法研究几何问题,求曲线方程的一般方法。

  五、教学措施

  1、教学中要传授知识与培育能力相结合,充分调动学生学习的主动性,培育学生的概括能力,是学生掌握数学基本方法、基本技能。

  2、坚持与高三联系,切实面向高考,以五大数学思想为主线,有目的、有计划、有重点,避免面面俱到,减轻学生的学习负担。

  3、加强教育教学研究,坚持学生主体性原则,坚持循序渐进原则,坚持启发性原则。研究并采用以发现式教学模式为主的教学方法,全面提高教学质量。

  4、积极参加与组织集体备课,共同研究,努力提高授课质量

  5、坚持向同行听课,取人所长,补己之短。相互研究,共同进步。

  6、坚持学法研讨,加强个别辅导(差生与优生),提高全体学生的整体数学水平,培育尖子学生。

  7、加强数学研究课的教学研究指导,培养学识的动手能力。

  六、课时安排

  本学期共81课时

  1、不等式18课时

  2、直线与圆的方程25课时

  3、圆锥曲线20课时

  4、研究课18课时

高二数学教学计划15

  教学目标:

  1、知识与技能

  (1)了解算法的含义,体会算法的思想;

  (2)能够用自然语言叙述算法;

  (3)掌握正确的算法应满足的要求;

  (4)会写出解线性方程(组)的算法;

  (5)会写出一个求有限整数序列中的最大值的算法.

  2、过程与方法

  (1)通过求解二元一次方程组,体会解方程的一般性步骤,从而得到一个解二元一次方程组的步骤,这些步骤就是算法,不同的问题有不同的算法;

  (2)同一个问题也可能有多个算法,能模仿求解二元一次方程组的步骤,写出一个求有限整数序列中的最大值的算法.

  3、情感与价值观

  通过本节的学习,对计算机的算法语言有一个基本的了解;明确算法的要求,认识到计算机是人类征服自然的一个有力工具,进一步提高探索、认识世界的能力.

  教学重点、难点:

  重点:算法的含义,解二元一次方程组、判断一个数为质数和利用“二分法”求方程近似解的算法设计.

  难点:把自然语言转化为算法语言.

  教学过程:

  (一)创设情景、导入课题

  问题1:把大象放入冰箱分几步?

  第一步:把冰箱门打开;

  第二步:把大象放进冰箱;

  第三步:把冰箱门关上.

  问题2:指出在家中烧开水的过程分几步?(略)

  问题3:如何求一元二次方程 的解?

  第一步:计算 ;

  第二步:如果 ,

  如果 ,方程无解

  第三步:下结论.输出方程的根或无解的信息.

  注意:在以上三个问题的求解过程中,老师要紧扣算法定义,带领学生总结,反复强调,使学生体会以下几点:

  ①有穷性:步骤是有限的,它应在有限步操作之后停止,而不能是无限地执行下去。

  ②确定性:每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可的。

  ③逻辑性:从初始步骤开始,分为若干个明确的步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题。

  ④不唯一性:求解某一个问题的算法不一定只有唯一的一个,可以有不同的算法。

  ⑤普遍性:很多具体的问题,都可以设计合理的算法去解决。

  注:其他还有输入性、输出性等特征,结论不固定.

  提问:算法是如何定义?

  (二)师生互动、讲解新课

  x-2y=-1 ①

  回顾(课本P2内容): 写出解二元一次方程组 2x y=1 ② 的算法.

  解:第一步,②×2 ①,得5x=1;③

  第二步,解③,得x= ;

  第三步,②-①×2得5y=3;④

  第四步,解④ ,得y= ;

  第五步,得到方程组的解为 x= ;y= 。

  思考1:你能写出求解一般的二元一次方程组的步骤吗?

  上题的算法是由加减消元法求解的,这个算法也适合一般的二元一次方程组的解法

  对于一般的二元一次方程组 可以写出类似的求解步骤:

  第一步,①×b2-②×b1,得 ;③

  第二步,解③,得 .

  第三步,②×a1-①×a2,得 ;④

  第四步,解④,得 ;

  第五步,得到方程组的解为

  (高斯消去法)

  思考2:根据上述分析,用加减消元法解二元一次方程组,可以分为五个步骤进行,这五个步骤就构成了解二元一次方程组的一个“算法”.我们再根据这一算法编制计算机程序,就可以让计算机来解二元一次方程组.那么解二元一次方程组的算法包括哪些内容?

  思考3:一般地,算法是由按照一定规则解决某一类问题的基本步骤组成的.

  你认为:

  (1)这些步骤的个数是有限的还是无限的?

  (2)每个步骤是否有明确的计算任务?

  总结:在数学中,按照一定规则解决某一类问题的明确和有限的步骤称为算法.

  算法(algorithm)一词出现于12世纪,源于算术(algorism),即算术方法.指的是用阿拉伯数字进行算术运算的过程.在数学中,算法通常是指按照一定的规则解决某一类问题的明确的和有限的步骤.现在,算法通常可以编成计算机程序,让计算机执行并解决问题.后来,人们把它推广到一般,把进行某一工作的方法和步骤称为算法.

  广义地说,算法就是做某一件事的步骤或程序.菜谱是做菜肴的算法,洗衣机的使用说明书是操作洗衣机的算

  法,歌谱是一首歌曲的算法.在数学中,主要研究计算机能实现的算法,即按照某种机械程序步骤一定可以得到结果的解决问题的程序.比如解方程的算法、函数求值的算法、作图的算法,等等.

  (三)例题剖析,巩固提高

  例1(课本P3例1):如果让计算机判断7是否为质数,如何设计算法步骤?

  算法:

  第一步,用2除7,得到余数1,所以2不能整除7.

  第二步,用3除7,得到余数1,所以3不能整除7.

  第三步,用4除7,得到余数3,所以4不能整除7.

  第四步,用5除7,得到余数2,所以5不能整除7.

  第五步,用6除7,得到余数1,所以6不能整除7.

  因此,7是质数.

  课堂练习1:

  整数89是否为质数?如果让计算机判断89是否为质数,按照上述算法需要设计多少个步骤?

  思考4:用2~88逐一去除89求余数,需要87个步骤,这些步骤基本是重复操作,我们可以按下面的思路改进这个算法,减少算法的步骤.

  (1)用i表示2~88中的任意一个整数,并从2开始取数;

  (2)用i除89,得到余数r. 若r=0,则89不是质数;若r≠0,将i用i 1替代,再执行同样的操作;

  (3)这个操作一直进行到i取88为止.

  你能按照这个思路,设计一个“判断89是否为质数”的算法步骤吗?

  算法设计:

  第一步,令i=2;

  第二步,用i除89,得到余数r;

  第三步,若r=0,则89不是质数,结束算法;若r≠0,将i用i 1替代;

  第四步,判断“i>88”是否成立?若是,则89是质

  数,结束算法;否则,返回第二步.

  探究:一般地,判断一个大于2的整数是否为质数的算法步骤如何设计?

  在中央电视台幸运52节目中,有一个猜商品价格的环节,竟猜者如在规定的时间内大体猜出某种商品的价格,就可获得该件商品.现有一商品,价格在0~8000元之间,采取怎样的策略才能在较短的时间内说出比较接近的`答案呢?

  例2、一群小兔一群鸡,两群合到一群里,要数腿共48,要数脑袋整17,多少只小兔多少只鸡?

  算法1:S1 首先计算没有小兔时,小鸡的数为:17只,腿的总数为34条。

  S2 再确定每多一只小兔、减少一只小鸡增加的腿数2条。

  S3 再根据缺的腿的条数确定小兔的数量: (48-34)/2=7只

  S4 最后确定小鸡的数量:17-7=10只.

  算法2:S1 首先设 只小鸡, 只小兔。

  S2 再列方程组为:

  S3 解方程组得:

  S4 指出小鸡10只,小兔7只。

  算法3:S1 首先设 只小鸡,则有 只小兔

  S2 列方程

  S3 解方程得 ,则

  S4 指出小鸡10只,小兔7只.

  算法4:S1 “请一名驯兽师”所有小鸡抬一条腿,所有小兔抬两条腿

  S2 有小兔 只

  S3 有小鸡 只

  S4 指出小鸡10只,小兔7只.

  算法5:S1 有小兔 只

  S2 有小鸡 只

  二分法:

  对于区间[a,b ]上连续不断,且f(a)f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,而得到零点近似值的方法叫做二分法.

  例3(课本P4例2):写

  出用“二分法”求方程 的近似解的算法.

  算法分析:

  令f(x)= ,则方程 的解就是函数f(x)的零点.

  第一步,令f(x)= ,给定精确度d.

  第二步,确定区间[a,b],满足f(a)·f(b)<0.

  第三步,取区间中点 .

  第四步,若f(a)·f(m)<0,则含零点的区间为[a,m],否则,含零点的区间为[m,b].

  将新得到的含零点的区间仍记为[a,b];

  第五步,判断[a,b]的长度是否小于d或f(m)是否等于0.若是,则m是方程的近似解;否则,返回第三步.

  (四)课堂小结,巩固反思

  1、算法的主要特点:

  (1)有限性:一个算法在执行有限步后必须结束;

  (2)确切性:算法的每一个步骤和次序必须是确定的;

  (3)输入:一个算法有0个或多个输入,以刻划运算对象的初始条件.所谓0个输入是指算法本身定出了初始条件.

  (4)输出:一个算法有1个或多个输出,以反映对输入数据加工后的结果.没有输出的算法是毫无意义的.

  2、计算机解决任何问题都要依赖算法,算法是建立在解法基础上的操作过程,算法不一定要有运算结果.设计一个解决某类问题的算法的核心内容是将解决问题的过程分解为若干个明确的步骤,即算法,它没有一个固定的模式,但有以下几个基本要求:

  (1)符合运算规则,计算机能操作;

  (2)每个步骤都有一个明确的计算任务;

  (3)对重复操作步骤作返回处理;

  (4)步骤个数尽可能少;

  (5)每个步骤的语言描述要准确、简明.

【高二数学教学计划】相关文章:

高二数学教学计划03-01

高二数学教学计划05-19

数学高二教学计划02-15

(优选)高二数学教学计划06-22

高二数学教学计划8篇01-05

高二数学教学计划(15篇)12-23

高二数学教学计划15篇06-12

高二数学下学期教学计划02-02

高二数学教学计划集合15篇12-24